

Table 1. Segregation for resistance to black rot in the F_2 generation of a cross between Fla. 43-47 (resistant) and Caco (susceptible) bunch grape.

Replication	Resistant:susceptible		Chi square	Prob-ability
	Observed	Expected (15:1)		
A	28.2	28.1:1.9	0.006	.90-.95
B	28.5	30.9:2.1	4.277	.02-.05*
C	18.2	18.7:1.3	0.403	.50-.70
Total	74.9	77.8:5.2	2.985	.05-.10

*Chi-square value greater than that observed would be expected by chance in 5% or less of cases.

(susceptible). S_1 seedlings from 'Blue Lake' are actually F_2 seedlings from the cross between resistant and susceptible parents (Fla. 43-47 x 'Caco'). The F_2 segregation observed was reasonably close to a 15:1 ratio of resistant to susceptible progeny (Table 1).

One possible explanation of the observed segregation is that two resistance genes were heterozygous in 'Blue Lake' and that these genes segregated as in Table 2 in the S_1 progeny.

The distinct segregation reported here differs from the continuous variation reported by Barrett (3) on resistance to black rot of the foliage. However, this segregation was based on resistance in the fruit clusters and not on the foliage, and Barrett noted that foliar resistance may not necessarily correspond to fruit resistance in species such as *V. bicolor* LeConte (2).

While resistance in the fruit appears to be digenic dominant in the case of

Table 2. A possible explanation of the segregation of S_1 seedlings of 'Blue Lake' grape for black rot resistance in the fruit.

Genetic segregation	Genotype	Phenotype	Observed segregation
9	Br ¹ — Br ² —	resistant	
3	Br ¹ — br ² br ²	resistant	15
3	br ¹ br ¹ Br ² —	resistant	
1	br ¹ br ¹ br ² br ²	susceptible	1

'Blue Lake,' it is likely that additional genes would be segregating in crosses between resistant and highly susceptible cultivars. More research is needed to determine the overall pattern of inheritance.

Literature Cited

1. Barrett, H. C. 1953. A large-scale method of inoculating grapes with the black rot organism. *Plant Dis. Repr.* 37:159.
2. Barrett, H. C. 1953. A survey of black rot resistance of the foliage of wild grape species. *Proc. Am. Soc. Hort. Sci.* 62: 319-322.
3. Barrett, H. C. 1955. Black rot resistance of the foliage on seedlings in selected grape progenies. *Proc. Am. Soc. Hort. Sci.* 66:220-224.
4. Demaree, J. B., I. W. Dix, and C. A. Magoon. 1937. Observations on the resistance of grape varieties to black rot and downy mildew. *Proc. Am. Soc. Hort. Sci.* 35:451-460.
5. Luttrell, E. S. 1946. Black rot of muscadine grapes. *Phytopathology* 36:905-924.
6. McGrew, J. R. 1976. Screening grape seedlings for black rot resistance. *Fruit Varieties Jour.* 30:31-32.
7. Stover, L. H. 1960. Blue Lake, a new bunch grape for Florida home gardens. *Fla. Agr. Exp. Sta. Circ.* S-120.

Attempts at Cherry Breeding in Florida^{1,2}

W. B. SHERMAN³

There are no palatable cherries in the deep South of the U.S. Sweet (*Prunus avium*), sour (*P. cerasus*) and duke (hybrids) cherries are grown in

more northern U.S. climates because they have high winter chilling requirements. Many cherry cultivars and their seedlings have been planted in

the South and tropical highland areas but none have been grown with success as they lack genes for low chilling (1, 2, 3).

Native black cherry (*P. serotina*) and cherry laurel (*P. caroliniana*) are relatives of edible cherries but crosses with them have not been successful, Taiwan flowering cherry (*P. campanulata*) is adapted to the Northcentral Florida area (4) but attempts to hybridize it with sweet cherries have thus far been unsuccessful. Capulin cherry (*P. serotina*, sometimes referred to as *P. salicifolia*) of South America (2) has also been tested in Florida but fruit is only slightly better than local types. *P. pseudocerasus* from China has also been established at Gainesville, but it has shown delayed foliation due to inadequate chilling and has not fruited.

P. pleiocerasus, native of Shensi in China (32° lat), was obtained from Reid Brooks, University of California in 1954. An *F*₁ hybrid, *P. pleiocerasus* x 'Black Tartarian,' (cross by W. E. Lammerts), was obtained in 1957. *P. pleiocerasus* is a tropical evergreen at Gainesville and trees have been injured by cold, with rare fruiting. It was eventually lost due to freeze injury and attempts to relocate this species have failed. The *F*₁ hybrid is very low chilling but is not self-fruitful. Its chilling requirement is similar to lowest chilling Florida peaches (< 200 hrs below 45F).

Many attempts have been made during the last 20 years to obtain crosses with the *F*₁ hybrid, *P. pleiocerasus* x 'Black Tartarian.' Pollen of *P. pleiocerasus* was applied to 50 flowers of the *F*₁ hybrid and 3 fruit set. The resulting seedlings were trans-

planted in south Florida but they did not survive. Pollen of *P. campanulata* was applied to several hundred flowers with no fruit set. Attempts involving approximately 20,000 hand pollinations have been made in an effort to cross the *F*₁ hybrid with sweet cherry but all failed. Pollen from the *F*₁ hybrid was applied to cultivars representing many incompatibility groups, including self-fertile 'Stella' and reciprocal crosses. Applications of benzyladenine, gibberellic acid and NAA following pollination delayed fruit abscission through shuck split but have not resulted in mature fruits. Embryos were observed microscopically but an attempt to grow them in tissue culture failed.

Two seedlings were obtained in 1976 and 3 in 1977 on the *F*₁ hybrid, using mixed pollen to create a recognition-pollen situation. Pollen applied was *F*₁, 'Stella' and *P. campanulata* in a 1:1:1 proportion. It should be possible to intercross these seedlings or cross them with other sweet cherries in order to get recombinants with palatability similar to that of sweet cherry. These seedlings will add to the cherry germplasm pool.

Literature Cited

1. Darrow, G. M. 1953. Deciduous fruits in Central America, Colombia and Ecuador. *Ceiba* 4:69-80.
2. Popenoe, W., and J. M. Benitez. 1965. Temperate zone fruits in the Central American Highlands. *Proc. Caribbean Region Amer. Soc. Hort. Sci.* 8:118-129.
3. Ruck, H. C. 1975. Deciduous fruit tree cultivars for tropical and subtropical regions. *Hort. Rev.* 3. *Commonwealth Agr. Bur.* p. 37-40.
4. Russell, Paul. 1934. The oriental flowering cherries. *U. S. Dept. Agr. Cir.* 313. p. 3-12.

¹Florida Agricultural Experiment Stations Journal Series No. 529.

²Appreciation is extended to R. D. Way, George Oberle, Ollie Bradt, Victor Prince, R. L. Anderson and E. M. Meader for supplying pollen or attempting crosses for us during the past 20 years.

³Associate Professor, Fruit Crops Dept., Univ. of Fla., Gainesville 32611.