

cultivars. *J. Amer. Soc. Hort. Sci.* 95: 750-754.

8. Downs, R. J. and A. A. Piringer. 1955. Differences in photoperiodic responses of everbearing and June-bearing strawberries. *Proc. Amer. Soc. Hort. Sci.* 66: 234.
9. Guttridge, C. G. 1969. *Fragaria*. In: The Induction of Flowering, L. T. Evans (ed.), Cornell Univ. Press, N.Y. 488 pp.
10. Hartmann, H. T. 1947. Some effects of temperature and photoperiod on flower formation and runner production in the strawberry. *Plant Physiol.* 22:407-420.
11. Heide, D. M. 1977. Photoperiod and temperature interactions in growth and flowering of strawberry. *Physiol. Plant.* 40:21-26.
12. Himelrick, D. G. 1984. New strawberry offers strong potential. *Fruit Grower* 104(5):10-13.
13. Mason, D. T. 1967. Inflorescence initiation in the strawberry. 2. Some effects of date and severity of post-harvest defoliation. *Hort. Res.* 7:97.
14. Piringer, A. A. and D. H. Scott. 1964. Interrelation of photoperiod, chilling and flower-cluster and runner production by strawberries. *Proc. Amer. Soc. Hort. Sci.* 84:295-301.
15. Robertson, M. 1955. Studies in the development of the strawberry. III Flow-
- er-bud initiation and development in large-fruited perpetual ("Remontant") strawberries. *J. Hort. Sci.* 30:62-68.
16. Smeets, L. 1980. Effect of temperature and daylength on flower initiation and runner formation in two everbearing strawberry cultivars. *Scientia Hort.* 12: 19-26.
17. Smeets, L. 1982. Effect of chilling on runner formation and flower initiation in the everbearing strawberry. *Scientia Hort.* 17:43-48.
18. Vince-Prue, D. and C. G. Guttridge. 1973. Floral initiation in strawberry: Special evidence for the regulation of flowering by long-day inhibition. *Planta* 110:165-172.
19. Voth, V. and R. S. Bringhurst. 1958. Fruiting and vegetative responses of Lassen strawberry in southern California as influenced by nursery source, time of planting and plant chilling history. *Proc. Amer. Soc. Hort. Sci.* 72:186.
20. Waldo, G. F. 1935. Investigations on runner and fruit production of everbearing strawberries. *USDA Tech. Bull.* 470.
21. Webb, R. A. and B. A. White. 1971. The effect of rooting date on flower production in the strawberry. *J. Hort. Sci.* 46:413-423.
22. Went, F. W. 1957. The Experimental Control of Plant Growth. Chapter 9; 129-138. *Chronica Bot. Comp.*, Mass.

Reviewed Research Paper

Potential Methods for Gene Exchange Between Rabbiteye and Highbush Blueberries¹

RONALD G. GOLDY² AND PAUL M. LYRENE³

Cultivated blueberries (*Vaccinium* sp.) are mainly tetraploid ($4x = 2n = 48$) or hexaploid ($6x = 2n = 72$), and hybrids between these 2 groups are of considerable interest. The 2 species whose hybrids would probably be the most valuable are tetraploid highbush (*V. corymbosum* L.) and hexaploid rabbiteye (*V. ashei* Reade). Both rabbiteye and highbush have been im-

proved by plant breeding, and each has strengths which could compliment the weaknesses of the other. Direct hybridizations between the 2 were once believed to produce almost sterile pentaploids (2, 3). More recent work has shown that hybrids are not only fertile but range in chromosome number between pentaploid ($5x = 60$) and tetraploid (6, 12, 13). However,

¹Florida Agricultural Experiment Journal Series No. 4739.

²Department of Horticultural Science, North Carolina State University, Raleigh, NC 27650.

³Fruit Crops Dept., University of Florida, Gainesville 32611.

fertility is low enough in these hybrids that they are not themselves commercially useful. Several methods for obtaining gene transfers between rabbiteyes and highbush hold potential and are the subject of this review.

Due to early thinking that $6x \times 4x$ crosses produced infertile $5x$ plants Darrow *et al.* (2, 3) recognized the need for tetraploid rabbiteye of hexaploid highbush breeding lines to facilitate gene transfers. Since tetraploid hybrids involving rabbiteye can theoretically be obtained from existing species ($6x \times 2x = 4x$), tetraploid rabbiteye-type hybrids have previously received the most attention. Diploids which have been used in $6x \times 2x$ crosses are *V. tenellum* Ait., *V. elliottii* Chap. (3), and *V. darrowi* Camp (3, 8).

Hybrids between hexaploid and diploid species are hard to obtain. Sharpe and Sherman (8) reported only 5 hybrids from 7500 pollinations. Furthermore, hybrids from these crosses are not always tetraploid. The only cross that has given documented tetraploid plants has been *V. ashei* x *V. tenellum* (3). Most reports on using other diploid parents do not discuss chromosome numbers of the hybrids. A recent study by Goldy (4) found 3 *V. ashei* x *V. darrowi* hybrids to be pentaploid. The 3 hybrids had numerous meiotic irregularities which resulted in reduced fertility. Even though initial hybrids are pentaploid, further breeding must reduce them to tetraploids, since 3 tetraploid cultivars have been released that have *V. ashei* x *V. darrowi* ancestry (10, 11).

Two other methods for obtaining rabbiteye x highbush hybrids are being tested in the University of Florida blueberry breeding program, and both utilize octoploid breeding lines. The procedure involves treating tetraploid highbush blueberries with colchicine to obtain octoploid plants. These octoploid plants are then either backcrossed to highbush, theoretically producing hexaploid plants which can be

hybridized with rabbiteye, or used directly in $6x \times 8x$ crosses. Octoploid breeding lines have been produced by Chandler (1) and Goldy (4).

Goldy (4) evaluated the fertility and crossability of an octoploid plant in $4x \times 8x$ crosses and found it to be significantly less fertile than $4x \times 4x$ controls. He also found that 739, $4x \times 8x$ pollinations gave 125 seedlings, of which only one was hexaploid, and it mitotically unstable, having somatic cells ranging in chromosome number from 48 to 168. However, most cells, had 72. The other 124 seedlings proved to be tetraploid. The one hexaploid plant has not yet flowered, but it is hoped that it will produce some $3x$ gametes for use in rabbiteye crosses in spite of its mitotic instability.

Direct $6x \times 8x$ pollinations were made in 1983 and a large number of berries set from 751 pollinations. The idea in making these crosses is to produce heptaploid plants that can be backcrossed to the hexaploid level to obtain hexaploid end products. Since chromosome elimination does occur in blueberries (6, 7), it is hoped that heptaploid plants will breed as hexaploids by elimination of the 12 extra chromosomes. Chromosome counts for seedlings from $6x \times 8x$ crosses cannot be obtained until 1984.

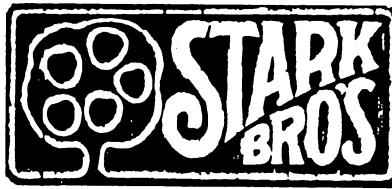
Another method previously suggested for crossing rabbiteyes and highbush is to double pentaploid rabbiteye x highbush hybrids to decaploid ($10x$) and do breeding at this level (8). Decaploid plants have been produced and studied, and appear to be fairly fertile (5). So far this method has not produced any useful plants and it appears to have been dismissed, possibly prematurely.

The final methods to be reviewed deals again with direct $6x \times 4x$ hybrids. Since the hybrids produce euploid as well as aneuploid gametes, it may be possible to backcross the hybrids to hexaploid or tetraploid plants obtaining hybrids of increasing rabbit-

eye or highbush character. These backcrossed plants would eventually produce tetraploid or hexaploid rabbiteye-highbush hybrids.

Although only the $6x \times 2x$ method has so far resulted in the release of cultivars, all the other techniques discussed are potentially useful in facilitating rabbiteye \times highbush gene

transfers. Some may prove more useful than others and some will no doubt prove hard to carry out. In making these wide crosses, breeders must not only select true hybrids and confirm their chromosome number, but they also must select hybrids that possess the desired characteristics of the parental species.


Literature Cited

- Chandler, C. K. 1980. Guard cell length and leaf thickness as indicators of induced polyploidy in *Vaccinium*. MS Thesis, University of Florida, Gainesville.
- Darrow, G. M., H. Dermen, and D. H. Scott. 1949. A tetraploid blueberry from a cross of diploid and hexaploid species. *J. Hered.* 40:304-306.
- Darrow, G. M., D. H. Scott and H. Dermen. 1954. Tetraploid blueberries from hexaploid \times diploid species crosses. *Proc. Amer. Soc. Hort. Sci.* 63:266-270.
- Goldy, R. G. 1983. Heteroploid gene transfer in *Vaccinium* section *Cyanococcus*. Ph.D. Dissertation, University of Florida, Gainesville.
- Jelenkovic, G. and A. D. Draper. 1970. Fertility and chromosome behavior of a derived decaploid of *Vaccinium*. *J. Amer. Soc. Hort. Sci.* 95:816-820.
- _____. 1973. Breeding value of pentaploid interspecific hybrids of *Vaccinium*. Jugoslovensko vocation. God. Vii, br. 25-26, dy. 237-244.
- Lyrene, P. M. and W. B. Sherman. 1983. Mitotic instability and $2n$ gamete production in *Vaccinium corymbosum* \times *V. elliottii* hybrids. *J. Amer. Soc. Hort. Sci.* 108:339-342.
- Moore, J. N., D. H. Scott, and H. Dermen. 1964. Development of a decaploid blueberry by colchicine treatment. *Proc. Amer. Soc. Hort. Sci.* 84:274-279.
- Sharpe, R. H. and W. B. Sherman. 1971. Breeding blueberries for low chilling requirement. *HortScience* 6:3. 145-147.
- _____. 1976. 'Flordablue' and 'Sharplue' two new blueberries for central Florida. *Fla. Agric. Exp. Sta. Cir.* S-240.
- Sherman, W. B. and R. H. Sharpe. 1977. 'Avonblue' blueberry. *HortScience* 12:510.
- Vorsa, N., G. Jelenkovic, and A. D. Draper. 1983. Meiotic analysis of BC₁ *Vaccinium australe* Small \times *V. ashei* Reade hybrids. *HortScience* 18:562 (Abstr.).
- Vorsa, N., G. Jelenkovic, and A. D. Draper. 1983. Fertility of aneuploids derived from backcross progenies of *Vaccinium australe* Small \times *V. ashei* Reade pentaploid hybrids. *HortScience* 18:526 (Abstr.).

A TRADITION OF EXCELLENCE

For 168 years, Stark Bro's has provided top-quality varieties and rootstock for commercial growers.

**FREE
FULL-COLOR
CATALOG
AVAILABLE
ON REQUEST**

[®] **FRUIT TREES
NEWEST
AND BEST
VARIETIES
314-754-5511**

Stark Trees Bear Fruit. Since 1816.

Stark Bro's Nurseries & Orchards, Louisiana, Mo. 63353