

water loss and further studies should be conducted to examine this relationship. Satisfactory yields on mature trees and adequate consumer acceptance implies that the late maturing cultivars, 'Bosc' and 'Anjou,' could be grown and marketed through the present distribution system.

Literature Cited

1. Embree, C. G., A. D. Crowe and H.-Y. Ju. 1986. Yield patterns over 5 years for Clapp's Favorite, Bartlett, Flemish Beauty, Bosc and Anjou pears in 25 year old orchard. Kentville Research Station Annual Report. 1986.
2. Bligh, R. D. L. 1949. Pear growing in the Annapolis Valley. Can. Dept. Agric. Publ. 824.
3. Mellenthin, W. M., P. M. Chen and S. B. Kelly. 1980. Low oxygen effects on dessert quality, scald prevention and nitrogen metabolism of 'd'Anjou' pear fruit during long-term storage. J. Amer. Soc. Hort. Sci. 105:522-527.
4. Wang, C. Y. and Mellenthin, W. M. 1975. Effect of short-term high CO₂ treatment on storate of d'Anjou pear. J. Amer. Soc. Hort. Sci. 100:492-495.

Fruit Varieties Journal 42(3)79-85 1988

Inbreeding and Co-ancestry of Low Chill Short Fruit Development Period Freestone Peaches and Nectarines Produced by the University of Florida Breeding Program

RALPH SCORZA, W. B. SHERMAN, AND G. W. LIGHTNER²

Abstract

Inbreeding coefficients and coefficients of coancestry were calculated for low chill requiring, short fruit development period (FDP) peaches released from the University of Florida (UF) breeding program. Inbreeding was relatively low for most cultivars as were coefficients of coancestry for most parental combinations. The UF cultivars represent a diverse pool of germplasm with potential for commercial production or for extending the genetic base of breeding programs in the tropical highlands and subtropics.

The peach (*Prunus persica* (L.) Batsch) is self fertile and naturally self pollinates. It is considered tolerant of inbreeding, and open pollination usually results in less than 5% outcrossing (2, 4, 5). The peach's natural tolerance of inbreeding and the repeated use of germplasm of high fruit quality has led to the development of a limited germplasm base for the major freestone

cultivars grown in the eastern U.S. The relatively narrow range of variation in disease, insect, cold, and other stress resistance has been cited as a function of this limited genetic base (8).

Since the early 1950's the University of Florida (UF), Gainesville, Florida, has developed a breeding program for the production of low chill requiring, short fruit development period (FDP) peaches. Low chill requirement is not desirable for peaches grown in the major temperate zone production areas due to the tendency of low chill genotypes to bloom during warm periods that can occur in late winter. Thus, the character was generally not available in germplasm in most other U.S. breeding programs. A short FDP (<100 days) is important in Florida because fruit must be harvested before

Table 1. Inbreeding coefficients of peach and nectarine cultivars from the University of Florida breeding program.

Cultivar	Parentage	Inbreeding Coefficient	
		Case I	Case II
Columbina(N) ¹	Sunlite op	.008	.500
Desertred	FLA 3-4 X FLA 5-9	.081	.162
Flordabearty	F 2-678 op	0	.609
Flordabelle ²	[(Southland X Hawaiian) op] X Flordawon	.063	.500
*Flordagold ²	RioGrande op	0	.500
*FlordaGrande ²	(Flordasun X Springtime) X FLA 5-58	.192	.277
Flordahome ²	(PI 146130 X P. davidiana) op 2X ³	0	.500
*Flordaking ²	FLA 9-67 X Early Amber	.188	.250
*Flordaprince ²	FLA 27 X Maravilha	.030	.117
Flordaqueen ²	(Southland X Jewel) op	0	.500
Flordared ²	(Southland X Hawaiian) op 4X ³	0	.750
Flordasun ²	L 1-15 X Springtime	0	0
Flordawon ²	(Southland X Hawaiian) op 2X ³	0	.750
Hermosillo	FLA 5-5 X FLA 3-4	.021	.049
KGold (N)	FLA 4-65 X FLA 68-50	.020	.078
Maravilha	Sunred X (FLA 14-32 op)	.008	.063
McRed	F 62-77 op	0	.781
Okinawa	Unknown (seed importation-rootstock)	0	0
Opedepe	Flordabelle X FV 9-266	.041	.109
Rayon	FLA 16-61 X KGold	.039	.156
San Pedro	Flordasun X Springtime	.250	.250
Shermans Early	LFA 9-33 X FLA 10-48	.018	.098
Shermans Red	Sunred X Springbrite	.020	.066
Sundowner (N) ²	(Sunred X Columbina) op	0	.547
Sungold (N) ²	NJ 5107397 X (Okinawa X Panamint)	0	0
Sunhome (N) ²	(KGold X FLA 1-59) X Sunred	0	.553
*Sunland (N) ²	FLA 3-4 X Armking	0	0
Sunlite (N) ²	(Okinawa X Panamint) X NJN 21	0	0
Sunrich (N) ²	NJ 5107397 X (Okinawa X Panamint)	0	0
Sunred (N) ²	[Panamint X (Southland X Hawaiian F ₂)] op	0	.500
Sunripe (N) ²	(Flordawon X Merril Princess) op	.254	.406
*TropicSweet ²	FLA 46-95 X KGold	.023	.094
Mean inbreeding		.039	.286
Cultivar Grouping			
6 elite UF cultivars (indicated by *)	"	.072	.206
Eastern Freestone peaches	"	.039	.156
30 selected Eastern Freestone peaches ⁴	"	.103	.244

¹ (N) = nectarine.² Official releases by IFAS, Univ. of Fla. Others given clonal names elsewhere.³ Number of times self pollinated.⁴ Inbreeding coefficients of cultivars with incomplete pedigrees calculated as zero instead of being excluded from calculation as in Scorz et al., 1985 (8).

the rainy season begins in early June. This character is not usually found in low chill seed introductions as short FDP is related to lack of seed germination from immature embryos (4). Thus, short FDP was introduced from early-ripening U.S. temperate zone genotypes. The UF breeding program has developed cultivars from crosses involving low chill requiring seedlings introduced by the early Spanish settlers in the southern U.S., imported germplasm from Okinawa, south China, and South and Central American, and from improved temperate zone U.S. germplasm.

While the UF produced cultivars may be genetically distinct from the cultivars grown in the more northern areas of the U.S. selection for low chill requirement, short FDP, and high fruit quality may have produced a germplasm base as restricted as that of the more northern cultivars. Since UF cultivars are being tested in over 51 countries and grown commercially in 8 (7), a narrow genetic base would have widespread impact in terms of genetic vulnerability. The following study was undertaken to investigate the extend of inbreeding in the cultivars released by the UF peach and nectarine breeding program.

Materials and Methods

Procedures for the development of the pedigree tracing program, inbreeding, and coefficient of coancestry analyses have been previously outlined (8). Briefly, a pedigree data file was created and the SAS procedure INBREED calculated inbreeding coefficients. The PEDIT program sorted records from the oldest to the most recent generation. Two data files were created for the study, the first, case I, was based on pedigrees using 'J.H. Hale' as the progeny of unknown parents and 'Elberta' and 'Belle' as the offspring of unrelated, unknown pollinizers of 'Chinese Cling.' Open pollinations in case I were assumed due to outcrossing to unrelated males. The

second data set, case II, incorporated assumptions which would give higher inbreeding coefficients. Assumptions were based on undocumented but probable pedigrees resulting from uncontrolled pollinations. In this case 'J.H. Hale' was assumed to result from self pollination of 'Elberta.' 'Elberta' was the offspring of 'Chinese Cling' X 'Early Crawford.' 'July Elberta' was considered to be an open pollinated seedling of 'Elberta.' All "open pollinations" in case II were assumed to be the result of selfing, except for male sterile genotypes. Progeny from open pollinations of male sterile cultivars were assumed to result from outcrossing to unknown males. Parents of unknown origin in cases I and II, were assumed to be unrelated and non-inbred. It was also assumed that selection carried out by the breeding program in segregating seedling populations had not altered the probabilities of identity by descent of alleles. The PEACHPED program traced pedigrees.

Results and Discussion

Inbreeding coefficients of cultivars for case I were low except for 'Flordagrande,' 'Flordaking,' 'San Pedro,' and 'Sunripe' (Table 1). If the assumptions for case II are considered, ie, the maximum amount of inbreeding possible given our knowledge of probable pedigrees, many cultivars have coefficients greater than 0.125, the inbreeding coefficient for half sibs. Some notable exceptions with low inbreeding coefficients for case II include 'Flordasun,' 'Hermosillo,' 'K Gold,' 'Maravilha,' 'Okinawa,' 'Opedepe,' 'Shermans Early,' 'Shermans Red,' 'Sungold,' 'Sunland,' 'Sunlite,' 'Sunrich,' and 'TropicSweet.' The mean inbreeding coefficient of UF peach cultivars (.039 case I; .286 case II) (Table 1.) is identical for case I and higher for case II than the mean inbreeding of eastern US freestone peaches (.039 case I; .156 case II) (8). The assumption that all open pollination resulted in selfing

Table 2. Coefficients of coancestry of University of Florida peach and nectarine cultivars.

Cultivar	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Case I																																
1. Columbina	500	197	018	012	008	009	---	011	021	016	008	007	008	144	024	024	010	063	017	020	007	013	021	130	078	010	134	250	078	020	014	020
2. Desert Red	541	020	014	016	011	---	014	024	099	017	099	099	161	086	028	010	063	019	052	009	016	026	056	086	020	150	206	086	028	014	052	
3. Flordabeauty	500	050	028	021	---	033	037	033	051	017	033	045	039	029	037	---	062	053	009	035	060	010	---	011	010	035	---	023	026	042		
4. Flordabelle	532	021	019	---	141	084	030	035	015	282	054	030	019	021	---	286	156	008	085	028	007	---	008	007	024	---	015	079	032			
5. Flordagold	500	019	---	020	014	014	024	015	014	017	014	011	014	---	028	021	015	018	021	004	---	004	004	016	---	007	010	016				
6. Flordagrande	596	---	130	014	255	017	255	012	053	020	012	009	---	096	022	284	158	094	006	008	006	006	017	008	014	007	017					
7. Flordahome	500	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		
8. Flordaking	594	073	020	025	104	032	070	026	016	014	---	131	138	146	119	069	007	007	008	007	022	007	016	014	025							
9. Flordaprince	515	190	026	011	025	057	040	267	015	063	058	091	007	080	086	040	024	042	013	041	024	140	013	032								
10. Flordared	500	024	063	020	018	020	013	014	---	029	030	032	033	019	005	---	005	005	016	---	010	011	022									
11. Flordaqueen	500	014	024	029	025	022	028	---	046	036	009	025	035	007	001	007	007	032	001	013	018	028										
12. Flordasun	500	010	042	016	010	077	---	077	018	375	165	075	005	006	005	014	006	011	006	014												
13. Flordawon	500	021	020	013	014	---	155	041	005	026	019	005	---	005	005	016	---	010	131	022												
14. Hermosillo	511	091	030	020	047	064	090	055	097	086	043	052	021	135	100	052	029	018	059													
15. K Gold	510	042	014	---	032	275	014	029	051	023	032	081	074	047	032	068	011	267														
16. Maravilha	504	013	063	024	034	008	022	141	070	032	071	015	047	032	254	009	029															
17. McRed	500	---	034	021	004	014	027	004	---	004	004	020	---	007	015	018																
18. Okinawa	500	---	---	---	032	---	016	125	016	032	125	125	---	---	---																	
19. Opedepe	521	100	101	088	074	009	003	009	009	034	003	017	055	035																		
20. Rayon	520	012	087	044	016	016	046	041	039	016	044	019	155																			
21. SanPedro	625	145	103	005	009	005	013	009	011	003	010																					
22. Shermans Early	509	055	008	011	010	008	027	011	020	012	026																					
23. Shermans Red	510	070	019	072	014	042	019	260	018	039																						
24. Sundowner	500	028	036	038	073	028	130	005	015																							
25. Sungold	500	016	047	157	250	032	012	020																								
26. Sunhome	500	015	020	016	134	004	044																									
27. Sunland	500	080	047	017	006	041																										
28. Sunlite	500	157	039	028	039																											
29. Sunrich	500	032	012	020																												
30. Sunred	500	006	040																													
31. Sunripe	627	105																														
32. Tropic Sweet	512																															

Cultivar	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
----------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Table 3. Coefficients of coancestry of University of Florida peach and nectarine cultivars.

raises the inbreeding coefficients for case II in the UF cultivars since several resulted from repeated open pollinators (Table 1).

Many cultivars released by the UF were either intended for home owners or are no longer suitable under current fruit market standards. In addition, many of the UF clones named in other countries do not meet minimum U.S. market standards in fruit qualities such as size, color, firmness, shape, or resistance to cracking. Only 'Flordagold,' 'FlordaGrande,' 'Flordaking,' 'Flordaprince,' 'Sunland,' and 'TropicSweet' are currently recommended for commercial production. These elite cultivars have average inbreeding coefficients of .072 and 2.06 for case I and case II respectively. These values are lower than the average inbreeding coefficients for the 30 selected eastern US freestone cultivars and comparable to the inbreeding of all eastern US freestone peaches (0.39 case I; .286 case II) (8). This indicates that while inbreeding has been necessary for the development of commercial fruit quality, high levels of inbreeding are not necessary to incorporate the low chill, short FDP characteristics into high fruit quality genotypes. It may alternatively be stated that although unique, unrelated germplasm has been incorporated into these cultivars, a certain level of inbreeding, i.e., a level comparable with that of eastern US freestone peach germplasm in general, seemed to be necessary to obtain commercial fruit quality.

There was no correlation between the year of cultivar release and inbreeding, as has been found in highbush blueberries (3). The absence of such a correlation indicates that unrelated germplasm is being continually brought into the program and used in cultivar development.

Coefficients of coancestry analyses (Tables 2 and 3) indicate that except for a relatively few specific combina-

tions, the inbreeding potential of the UF germplasm is low and represents a rich source of low chill requiring, short FDP peach and nectarine germplasm. Recent influxes of new germplasm into the breeding program include low chill genotypes from Venezuela, Peru, southern Brazil, Mexico, the Canary Islands, and Australia. These accessions possess characters such as evergreen foliage, peento (flat) fruit shape, nematode resistance, and non-melting flesh. These genotypes are now 1 to 3 generations in combination with low chill, short FDP germplasm. With current emphasis on fruit quality, potential cultivars are expected to be selected within 5 years. The incorporation of these characters has proceeded at a rapid pace because their inheritance is relatively simple and most are readily selected. This implies that the development of peach cultivars with additional unique characters controlled by 1 or few genes such as dwarf and compact growth habits (1, 6), white flesh (1), and "stony hard" flesh (9), can proceed rapidly, provided that the new character(s) can be readily selected and provided that crosses with high fruit quality genotypes are included in the breeding program. The development of new germplasm and cultivars having characters unique for commercial production would be useful not only for low chill areas but for the temperate zone as well.

Literature Cited

1. Bailey, J. S. and A. P. French. 1949. The inheritance of certain fruit and foliage characters in the peach. Mass. Ag. Expt. Sta. Bull. 452, Univ. Mass., Amherst. 31 p.
2. Fogle, H. W. 1977. Self-pollination and its implication in peach improvement. *Fruit Var. J.* 31:74-75.
3. Hancock, J. F. and J. H. Siefker. 1982 Levels of inbreeding in highbush blueberry cultivars. *HortScience* 17:363-366.
4. Hesse, C. O. 1975. Peaches. p. 285-355. In: J. Janick and J. N. Moore (eds). *Advances in Fruit Breeding*. Purdue Univ. Press, West Lafayette, Ind.

5. Lesley, J. W. 1957. A genetic study of inbreeding and of crossing inbred lines in peaches. Proc. Amer. Soc. Hort. Sci. 70:93-103.
6. Mehlenbacher, S. A. and R. Scorza. 1986. Inheritance of growth habit in progenies of 'Com-Pact Redhaven' peach. HortScience 21:124-126.
7. Mowery, B. and W. B. Sherman. 1984. Breeding early ripening low-chilling peaches in Florida. Fruit Var. J. 38:6-8.
8. Scorza, R., S. A. Mehlenbacher, and G. W. Lightner. 1985. Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J. Amer. Soc. Hort. Sci. 110:547-552.
9. Yoshida, M. 1976. Genetical studies of the fruit quality of peach varieties. III Texture and keeping quality. (In Japanese). Bull. Fruit Tree Res. Sta. A3:1-16.

Fruit Varieties Journal 42(3)85-87 1988

Performance of Selected Peach Rootstocks in Ohio¹

DAVID C. FERREE AND JOHN C. SCHMID²

Abstract

'Veteran' on 12 clones of *P. besseyi* was compared to 'Veteran' on Siberian C over a 10-year period with no particular advantage of any of the clones. Own-rooted 'Redhaven' was compared to 'Redhaven' on 8 other rootstocks. Trees in this trial experienced severe tree loss due to winter injury between the second and third year of growth. Trees on GF655-2 and Damas 1869 survived better than on the other rootstocks. Trees on Damas 1869 root-suckered badly.

Introduction

Peach production in the Midwest has declined markedly in recent years primarily due to the loss of crops resulting from fluctuating cold winter temperatures. The winter conditions have also caused significant tree loss due to winter injury and the subsequent increase of peach canker in the injured tissue. Tree losses in commercial orchards often occur first in imperfectly drained areas of the field.

Considerable grower interest exists in identifying a rootstock more tolerant of imperfectly drained soil that will survive more adverse weather conditions. Another interest is in the production of a smaller more efficient tree to facilitate more intensive orchards

that will produce significant crops earlier in the life of the orchard. The two trials reported here evaluated selected rootstocks based on these criteria.

Materials and Methods

In 1977, Dr. James Cummins of the New York Agricultural Experiment Stateion at Geneva, donated 'Veteran' peach trees on 12 clones of *Prunus besseyi*. They were selected as promising trees from a New York orchard. Since there were variable numbers of trees of each clone, the trees were planted in a completely randomized design with trees of 'Veteran' on Siberian C as a control. The trees were planted 9' x 18' at the Jackson Branch of the Ohio Agricultural Research and Development Center.

In 1984, the NC-140 peach rootstock trial, 'Redhaven' peach was established at Wooster, Ohio. The trees were spaced 4.5 m x 6.0 m and trained as open center trees. The rootstock treatments were arranged as a randomized complete block with 10 single tree replicates with a guard row surrounding the planting. Trunk circumferences

¹Salaries and research support provided by state and federal funds appropriated to the Ohio State University. Journal Article No. 235 87.

²Professor and Agricultural Technician, Department of Horticulture, The Ohio State University/OARDC, Wooster, OH 44691. Appreciation is extended to Paul Brown of Jackson and John Elliott of Wooster for care of the trees.