

Virus Tested Pear Germplasm Available at the National Clonal Germplasm Repository in Corvallis, Oregon

JOSEPH POSTMAN,¹ AND KIM HUMMER²

Abstract

More than 1800 unique pear accessions are maintained at the National Clonal Germplasm Repository (NCCR) in Corvallis, Oregon. The 23 primary wild species of *Pyrus* and over 1400 unique cultivars, rootstocks, and selections are represented in this collection. Sixty-one percent of pear cultivars were found to be infected with common pear viruses. The repository has 575 pear clones that have tested virus-negative as received. Known viruses have been eliminated from 288 pear clones by subjecting them to thermotherapy and micropropagation. These clones are now available to researchers and plant breeders. Most have previously been unavailable in North America as virus-tested plants.

Introduction

The United States Department of Agriculture-Agriculture Research Service (USDA-ARS) operates the National Clonal Germplasm Repository (NCCR) for small fruits, hazelnuts, hops, mint and pears in Corvallis, Oregon. Since the 1950s, commercially important pome and stone fruit cultivars and rootstocks have been made available by the IR-2 Virus Free Repository at the Washington Agricultural Experiment Station in Prosser, Washington (5). In the mid 1970s, the need to preserve other valuable, but non-commercial, fruit and nut germplasm became evident and a series of clonal germplasm repositories were proposed (1). Eight such repositories have been established across the United States (11). The NCCR at Corvallis was the first of these to be built.

The NCCR *Pyrus* collection presently contains 1845 accessions representing about 1400 unique cultivars, rootstocks, and selections. All of the

primary wild species of *Pyrus* are represented (Table 1). Studies have shown that these wild species carry genes for resistance to nearly all important insects and diseases of pear, and adaptation to a very wide range of environmental conditions (10). Additional variants, representing the natural genetic diversity of the genus are being sought for the collection throughout the world.

Cultivars at the repository are maintained as growing plants in screenhouses, field plantings, and *in vitro*. Species material is kept as seed, pollen, and growing plants. Detailed historical, descriptive, and inventory records for each accession are kept on a computer database, and this information is available to the public through the Germplasm Resources Information Network (GRIN). *

Viruses in pear trees can result in lowered fruit production (3, 12), unmarketable fruit (7), reduced vegetative growth (3, 8, 12), loss of graft compatibility with certain rootstocks and decreased cold hardiness (8). The commercial importance of virus-free fruit trees has long been appreciated, and is evidenced by the tremendous use that has been made of the cultivars available through the IR-2 program (5). Availability of virus-tested historical cultivars and unimproved germplasm is just as important for present and future use. Researchers and breeders should use virus-negative plants to accurately evaluate genetic characteristics. When plants are propa-

¹Plant Pathologist.

²Curator, USDA-ARS National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, Oregon 97333.

*Further information about GRIN can be obtained by contacting the Database Manager, USDA-ARS, DBMU-CRIN, Rm 130 Bldg 001, BARC.West, Beltsville, MD 20705.

Table 1. Primary *Pyrus* species with natural origins and number of accessions at the National Clonal Germplasm Repository—Corvallis, December, 1987.

Species	Authority	Origins	Number of Accessions ^a
<i>P. amygdaliformis</i>	Villars	Greece, Sardinia, Turkey, Yugoslavia	39
<i>P. betulifolia</i> ^b	Bunge	Central, North China, South Manchuria	53
<i>P. calleryana</i>	Decne.	Central, South China	86
<i>P. communis</i>	L.	West, Southeast Europe, Turkey	81
<i>P. c. var. caucasica</i> ^c		Southeast Europe	6
<i>P. c. var. pyraster</i> ^d	L.	Southeast Europe	21
<i>P. cordata</i>	Desv.	France, Spain	24
<i>P. cossonii</i> ^e	Rehder	Algeria	5
<i>P. dimorphophylla</i>	Makino	Japan	38
<i>P. elaeagrifolia</i>	Pallas	Southeast Europe, Turkey, West USSR	33
<i>P. fauriei</i>	C. Schneider	Korea	31
<i>P. gharbiana</i>	Trabut	Morocco	8
<i>P. glabra</i>	Boiss.	Southeast Europe, Turkey	4
<i>P. hondoensis</i>	Kikuchi & Nakai	Japan	23
<i>P. koehnei</i> ^f	C. Schneider	South China, Taiwan	21
<i>P. mamorensis</i>	Trabut	Morocco	19
<i>P. nivalis</i>	Jacq.	West, Central, South Europe	23
<i>P. pashia</i>	Buch.-Ham Ex D.Don.	India, Nepal, Pakistan	32
<i>P. pseudopashia</i>	T.T. Yu	North, West China	1
<i>P. pyrifolia</i>	(Burm.f.) Nakai	China, Japan, Korea, Taiwan	32
<i>P. regelii</i> ^g	Rehder	Afghanistan	8
<i>P. salicifolia</i>	Pallas	North Iran, Southwest USSR	7
<i>P. syriaca</i>	Boiss.	Israel, Lebanon, Libya, Syria, Tunisia	17
<i>P. ussuriensis</i>	Maxim.	North China, Korea, Manchuria, Siberia	31
<i>P. xerophylla</i>	T.T. Yu	North, West China	1

^aCounts do not include named cultivars.

^bSynonym = *P. betulaefolia* Bunge, spelling incorrect; ICBN Article 73.8.

^cSynonym = *P. caucasica* Fed.

^dSynonym = *P. pyraster* L.

^eSynonym = *P. longipes* Coss. & Durr illegitimate later homonym; ICBN Article 64.1.

^fSynonym = *P. kawakamii* Hayata predated by *P. koehnei*.

^gSynonym = *P. heterophylla* Reg. & Schmalh. previous use refers to *Sorbus*.

gated clonally, every cutting, scion or runner that is taken from a virus infected plant may also carry the same viruses. Without appropriate precautions, distribution of plant germplasm is a very efficient method of distributing virus diseases around the world. To avoid this problem, all material stored at NCGR-Corvallis is being tested for important virus diseases.

Plants distributed by the Corvallis repository are accompanied by a virus status summary. Germplasm is available without charge to any researcher or plant breeder anywhere in the world. Since opening in 1980, NCGR-Corvallis has distributed plant germ-

plasm to 39 states in the US and to 34 foreign countries.

Virus Testing

All pear accessions maintained as growing plants are tested for latent viruses by graft inoculation of virus sensitive indicator plants under the proper environmental conditions. Fridlund (4, 6) has selected indicator varieties that produce foliar symptoms in the greenhouse following inoculation with several important viruses. Other pear viruses produce symptoms in inoculated indicator plants only after several years in the field. Serological methods such as ELISA (2)

cannot be used to detect most pear viruses until antisera against these viruses become available.

Some recommended indicators for pear viruses are listed in Table 2, and those that are being used at NCGR-Corvallis are noted. Pear vein yellows virus (PVYV) and ringpattern mosaic (= apple chlorotic leafspot virus) are the most common virus diseases found in pears. They can be detected reliably in about 10 weeks using the greenhouse method (6). Apple stem grooving virus (ASGV) induces foliar symptoms when 'Virginia Crab' or *Pyronia veitchii* is inoculated in the greenhouse, however neither indicator is reliable.

Pear vein yellows and ringpattern mosaic will produce symptoms in many cultivars when trees are young (Figure 1), especially when the plants are grown in a shaded greenhouse or screenhouse. Stony pit virus and the bark deforming viruses take several

years to detect in the field. Stony pit, which produces only fruit symptoms, may not show symptoms every year, or in all fruit. The variety 'Bosc' is being used as a field indicator to detect stony pit at the repository. Fortunately, the fruit and bark deforming viruses are uncommon.

Over 61 percent of pear cultivars and 14 percent of clones of wild species received at the repository were found to be infected with pear vein yellows or ringpattern mosaic viruses. Viruses in pear are only known to be spread by grafting, and are not passed through the seed. Plants that originated as seedlings and have not been grafted onto infected rootstocks should be virus-free. Thus many recently developed cultivars and material collected in the wild test virus-negative. The wild species in the repository collection that tested virus-positive were obtained from arboretum or experiment station collections and had

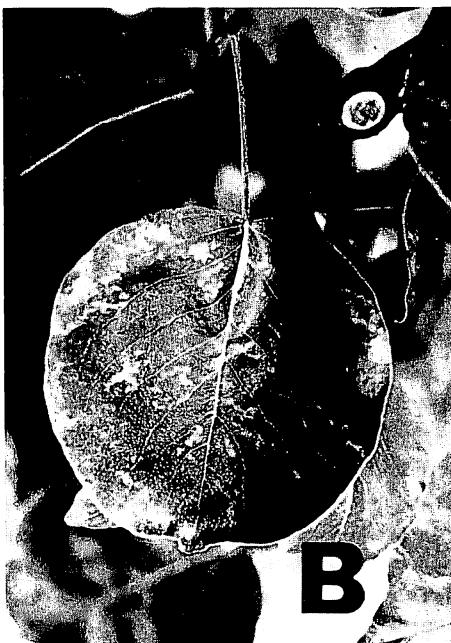
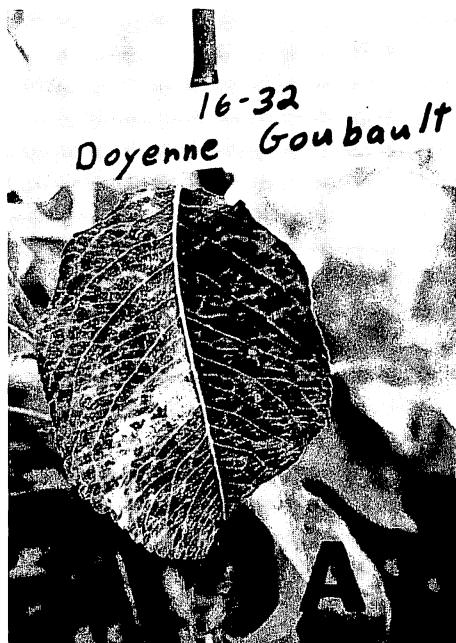



Figure 1. Symptoms of A) pear vein yellows virus in 'Doyenne Goubault' and B) pear ringpattern mosaic virus in 'Stuttgater-Geishirtle.'

Table 2. Sensitive indicator varieties recommended for detection of latent pear viruses by graft inoculation.

Virus Indicator	Time Required	Viruses Detected
Greenhouse Indexing		
Pyrus communis Nouveau Poiteau ^{a, b}	10 weeks	apple stem pitting, quince sooty ringspot, pear vein yellows, rough bark ^c , ringpattern mosaic (=apple chlorotic leafspot)
Malus pumila Virginia Crab ^a	8 weeks	apple stem grooving, apple stem pitting ^c
Pyronia veitchii ^a	8 weeks	apple stem grooving ^c , latent quince viruses, pear vein yellows
Field Indexing		
Pyrus communis Beurre Bosc ^a	3 crops	stony pit
Bartlett	2 years	bark split, blister canker, rough bark
Malus pumila Lord Lambourne	3 years	apple rubbery wood (MLO)

^aIndicators presently being used at NCGR-Corvallis.^bPlants must be cut back and defoliated after 4 weeks, symptoms are expressed on second flush of growth.^cReliability of indicator for these viruses is in question.

been clonally propagated, probably on virus infected rootstocks.

The repository presently has 575 pear accessions that have tested virus negative as received. A list of these can be obtained by contacting the curator.

Virus Elimination

All NCGR accessions discovered to be virus infected are subjected to thermotherapy and micropropagation. Infected plants are repropagated and grown in a heat chamber that alternates at 4 hour intervals between 30 and 38 degrees C. Alternating the temperature increases the percentage of plants surviving hot air thermotherapy (9) and still eliminates viruses from the new tips. This treatment has proven effective with pears at the repository. After about 3 weeks in the heat chamber, a 5 mm shoot tip is removed from each growing point and grafted onto a young seedling rootstock. (*Pyrus betulifolia* seedlings are used because their lobed juvenile leaves and their birch-like adult leaves are easily distinguished from most scions.) A bottle is inverted over the

micrograft to maintain high humidity until the graft union forms. Trees produced in this way must be grown and tested for several years to verify virus elimination. Approximately 75 percent of these trees have subsequently tested negative for pear vein yellows and ringpattern mosaic viruses. This process, from the time an infected plant is identified, until a virus-negative replacement tree is available for distribution, may take 3-5 years. Testing for additional viruses is continuing and new methods will be added as they are available.

Listed in Table 3 are pear clones that have been freed of known viruses at NCGR-Corvallis. There are presently 210 additional pear clones at various stages in the virus elimination process. Most of these clones have not previously been available in North America as virus-tested plants. Efforts to verify all plant identities by fruit and vegetative characteristics are underway. Requests for plant material should be addressed to: Curator, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, Oregon 97333.

Table 3. Pear accessions freed of viruses at the National Clonal Germplasm Repository—Corvallis^a.

Aarer Pfundbirne	Carigradsko Alice
Abate Fetel	Cayuga
Akce	Cebulka
Alexandrine Douillard	Chasseurs
Ames	Chojuro
Anjou, 4n	Citron D'Ete
Arganche	Clapp Favorite, Red (=Kalle, =Starkrimson)
Bariker	Claude Blanchet
Baronne Leroy	Colonel Marchand
Bartlett, Bagley Russet	Coloree de Juillet
Bartlett 4n	Comice, Spur
Bartlett 4n, Max Red	Comte de Chambord
Bella di Giugno [Bella di Diugno]	Comte de Lambertye
Belle Angevine (=Pound)	Comte de Lamy
Belle Lucrative [Esperen, Herrenbirne]	Comtesse Clara Frijs
Belle Picarde	Comtesse de Paris
Belle de Beugny	Conseiller a La Cour
Bera Wysmienta	Consigliere d'Appelle
Bere-obtjabra	Delices d'Avril
Bergamote d'Ete	Directeur Hardy
Bergamotte Sageret	Dorset
Berger	Doyenne Boussock (=Double Philip)
Besi d'Hery	Doyenne Coubault
Beurre Capiaumont	Doyenne Gris
Beurre Clairgeau	Doyenne Madame Levavasseur
Beurre Diel	Doyenne de Juillet (=Summer Doyenne)
Beurre Dilly [Bre Dilly]	Doyenne de la Grifferaye
Beurre Dubuisson	Doyenne du Comice 4n
Beurre Dumont	Duchesse Bronzee
Beurre Easter	Duchesse d'Angouleme Bronzee
Beurre Flon	Duchesse de Berry d'Ete
Beurre Fouqueray	Duchesse de Bordeaux
Beurre Giffard	Early Green Sugar
Beurre Gris	Early Harvest
Beurre Gris d'Hiver Nouveau	Ecmianka
Beurre Henri Courcelle	Emile d'Heyst [Emile Di Heyst]
Beurre Jean van Geert	Epargne (=Jargonelle)
Beurre Madame Henre Lamy	Epine de Mai
Beurre Millet	Erabasma
Beurre Phillippe Delfosse	Estella
Beurre Slucka	Eureka
Beurre d'Amanlis	Eva Baltet
Beurre d'Angleterre	Ewart
Beurre d'Arenberg	F-25
Beurre de Bollwiller	Favorite Morel
Beurre de Ghelin	Flemish Beauty
Beurre de Jonghe	Fondante de Moulins Lille
Beurre de Nantes	Fragrante
Beurre de Saint Nicolas	Frederick Clapp
Blanquet Precoce	Gansel's Bergamot
Bojka	Garber
Bon Chretien d'Hiver	Gelbstostler
Buffum	General Galliene
Butirra di Roma [Butirra Roma Pirovano]	General Le Clerc
Campas No. 1	Gieser Wildeman
Campas No. 2	Cliva Ukrainskaya

Table 3. Continued.

Graf Moltke [Grave Moltke]	Nagy Szegfukorte
Grand Champion	Namshi P't
Graparon	Nan Li
Grata	Norhausen Forelle [Nordhauser]
Grosse Louise	Normannischen Ciderbirne
Guar Li Sdlg No. 2	Novogodnaia (New Year)
HW 601	OHxF 130
Hardy, Red	OPR-135 P. calleryana
Henri Desportes	OPR-157 P. calleryana
Highland	OPR-255
Homony	Orel No. 15
Hortellet	P. communis 5n
Hosui	P. nivalis P-91
Huang Hsing Sui Li	P-12
Hung Li	P-79
Ilinka	Passans du Portugal
Jakobowka Hanowerska	Pautalia
Jalovecovka	Petit Muscat
Jalowcowka	Petite Rousselet
Jesinji Vodenac	Ping Ding Li
Jubileer D'Ar	Pitmaston Duchess
Kiparyjska	Porporata
Krolewka	Precoce Trevoux
Kyles Sugar	President Drouard
Lady Clapp	President Hardy
Laioyang 50	President Heron
Lange Graticol	President Loubet
Lawson	President Loutreul
Laxtons Progress	President Osmonville 40
Laxtons Satisfaction	Professor Grosdemage
Le Brun	Progres
Lehoux Grignon	Pulteney
Lezinova	RX 226
Longue Verte	RX 274
Longworth	Red Pear
Louis Vilmorin	Reimer's Hybrid
Louise Bonne de Jersey	Reliance
Mac	Rene Dunan
Madame Favre	Rotkottig Frau Ostergotland
Madame Gillekins	Royale Vendee
Madame Lye Baltet	Saint Gilles
Mag 1	Sanguine
Mag 6	Sanguinole
Mandan 58-4	Santa Clause
Marie Louise	Santa Maria
Mariette de Millepieds	Schweizer Wasserbirne
Mednik	Scipiona
Mellina	Senateur Belle
Mendel	Shinseihō
Messire Jean	Sierra
Mitchell	Sion Szu Mi
Mock's William (=Sensation Red Bartlett)	Snydér
Moe	Stout
Monterrey	Stuttgater-Geishirtle
Muskatelka Prava	Sucree Rosee
Muskatelka Seda	Sucree Verte
Mustabej	Sucree de Mountlucan

Table 3. Continued.

Sudduth	Tzu Ma Li
Sugar Top	Ulitchka [Upitchka]
Summer Muskatel Birne	Urbaniste [Des Urbanistes]
Surecrop	Uvedale St. Germain (=Pound)
Szumi	Variolosa (P. pashia hyb.)
Talasova Zimni	Verbula
Tedrow Beauty	Verte Longue d'Automne
Theilersbirne	W-l
Thornley	White Doyenne
Timpurii de Voinsati	White Star
Tioma	Wikler Early
Topka	Wilder Early
Toulouska pozdni	Wilenska Plenna
Triomphe de Touraine	Windorska
Triomphe de Vienne	Winkleman
Trubchanka Popularnaia (Common Trubchanka)	Winter Bartlett
Tsarigradka	Winter Cole
Tyford Monarch	Zuckerbirne

^aNames in brackets are the names as received; names in parentheses are synonyms or translations; names following comma describe mutant clones.

Literature Cited

1. Brooks, H. J. and D. W. Barton. 1977. A plan for national fruit and nut germplasm repositories. *HortScience* 12:298-300.
2. Clark, M. F. and A. N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. *J. Gen. Vir.* 34:475-83.
3. Cropley R. and A. F. Posnette. 1973. The effect of viruses on growth and cropping of pear trees. *Ann. Appl. Biol.* 73:39-43.
4. Fridlund, P. R. 1976. Pear vein yellows virus symptoms in greenhouse grown pear cultivars. *Pl. Dis. Rep.* 60:891-94.
5. Fridlund, P. R. 1980. The IR-2 program for obtaining virus free fruit trees. *Plant Disease* 64:826-30.
6. Fridlund P. R. 1980. Glasshouse indexing for fruit tree viruses. *Acta Hort.* 94:153-58.
7. Milbrath, J. 1966. Stony pit of pear in Oregon. *Ore. Ag. Exp. Sta. Tech. Bull.* 93, 23 pp.
8. Minoiu N., D. Vladianu, K. Pattantyus, P. Parnia, C. Craciun, V. Craciun, M. Stirban. 1986. Investigations on pear vein yellows in nursery *Acta Hort.* 193:89-94.
9. Nyland, G. and A. C. Goheen. 1969. Heat therapy of virus diseases of perennial plants. *Ann. Rev. of Phytopath.* 7:331-53.
10. Westwood, M. N. 1982. Pear germplasm of the new national clonal repository: Its evaluation and uses. *Acta Hort* 124:57-65.
11. Westwood, M. N. 1986. U.S. establishes national clonal repository system for fruit and nut crops. *Diversity* 9:19-21.
12. Westwood, M. N. and H. R. Cameron. 1974. Effects of vein yellows virus on growth, flowering and yield of Anjou pear. *J. Amer. Soc. Hort. Sci.* 99:425-26.