

## INFLUENCE OF ROOTSTOCK ON FRUIT AND TREE CHARACTERISTICS

of Macspur McIntosh apples in their first 4 years of production. The long-term influence of these rootstocks could not be assessed because the block was removed in 1991.

### Literature Cited

1. Autio, W. R. 1987. Can rootstock affect apple ripening and quality? *Fruit Notes* 52: 5-10.
2. Autio, W. R., J. A. Barden, and G. R. Brown. 1991. Rootstock affects ripening, size, mineral composition, and storability of 'Starkspur Supreme Delicious' in the 1980-81 NC-140 cooperative planting. *Fruit Var. J.* 45:247-251.
3. Cummins, J. N. and H. S. Aldwinkle. 1982. New and forthcoming apple rootstocks. *Fruit Var. J.* 36:1-10.
4. Drake, S. R., F. E. Larson, J. K. Fellman, and S. S. Higgins. 1988. Maturity, storage quality, carbohydrate, and mineral content of 'Gold
- spur' apples as influenced by rootstock. *J. Amer. Soc. Hort. Sci.* 113:949-952.
5. Fallahi, E., D. G. Richardson, and M. N. Westwood. 1985. Influence of rootstocks and fertilizers on ethylene in apple fruit during maturation and storage. *J. Amer. Soc. Hort. Sci.* 110:149-153.
6. Ferree, D. C. and J. C. Schmid. 1987. Performance of 'McIntosh' on 14 rootstocks. *Fruit Var. J.* 41:150-152.
7. Granger, R. L., G. L. Rouselle, M. Meheriuk, and S. Khanizadeh. 1991. Performance of 'Cortland' and 'McIntosh' on several clonal and seedling rootstocks in Quebec. *Fruit Var. J.* 46:114-118.
8. Lespinasse, J. M. 1980. La conduite du Pommier (2<sup>e</sup> partie). L'axe vertical. La renovation des vergers. Centre Technique Interprofessionnel des Fruits et Legume. Paris. 120 pp.
9. NC-140. 1991. Performance of 'Starkspur Supreme Delicious' on 9 rootstocks at 27 sites over 10 years. *Fruit Var. J.* 45:200-208.

Fruit Varieties Journal 48(2):97-100 1994

## Susceptibility of 15 Apple Cultivars to Apple Scab, Powdery Mildew, Canker and Mites

H. LINDHARD PEDERSEN,<sup>1</sup> J. VITTRUP CHRISTENSEN<sup>1</sup> AND POUL HANSEN<sup>2</sup>

### Abstract

Field resistance of 15 apple cultivars to diseases and pests was evaluated by not treating with pesticides during the observation period. The level of apple scab, powdery mildew, canker and fruit tree spider mites was assessed.

The cultivars 'Discovery', 'Filippa', and 'Bramleys Seedling' showed low susceptibility to scab. 'Mutsu', 'Summerred', 'Gravenstein' and in some cases 'Cox's Orange', 'Guldborg' and 'Red Ananas' were very susceptible to scab. 'Belle de Boskoop', 'Bramleys Seedling', 'Discovery', 'Filippa', 'Ingrid Marie' and 'Mutsu' had low susceptibility to powdery mildew, whereas 'Ildrod Pigeon' was sensitive to powdery mildew. 'Belle de Boskoop', 'Bramleys Seedling', 'Filippa' and 'Red Ananas' were not sensitive to canker. 'Discovery' and 'Transparente Blanche' were most susceptible to canker. 'Belle de Boskoop', 'Cox's Orange', 'Gravenstein', 'Mutsu' and 'Skovfoged' had low susceptibility to spider mites. 'Red Ananas', 'Filippa', 'Discovery', 'Guldborg' and 'Ildrod Pigeon' were attacked by spider mites.

### Introduction

Efforts to avoid or reduce the use of pesticides are stressed in organic and integrated pest management production systems.

Growing less susceptible cultivars appears to be one of the important factors. Knowledge about the susceptibility of different cultivars is mostly based on grower experience, where the conditions vary, or on research where only one or two pathogens were investigated. The present study was conducted to obtain more complete information about the susceptibility of important cultivars in Denmark under field conditions.

<sup>1</sup>The Danish Institute of Plant and Soil Science, Department of Pomology, 5792 Arslev, Denmark.

<sup>2</sup>The Royal Veterinary and Agricultural University, Department of Agricultural Sciences—Section for Horticulture. 1958 Frederiksberg C. Denmark.

### Materials and Methods

In 1983 15 apple cultivars (Table 1) were planted at the research fields of the Department of Pomologi, Aarslev and at the University of Agriculture, Taastrup. Twelve trees of each cultivars grafted on seedling, MM.106 and M.26 rootstocks were randomized in two blocks on each locations.

Grass alleyways and 1.5 m herbicide strips in the row were established. Row distance was 6 m, and the trees were shaped as bush trees.

The trees were not protected with chemicals against fungal diseases and pests during the observation period.

The level of scab infection on fruits at harvest was assessed on 100 fruits per block. The level of infections of the following was assessed annually in August on a scale of 1 = nothing to 10 = severe: scab (*Venturia inaequalis*), powdery mildew (*Podosphaera leucotricha*), canker (*Nectria galligena*) and red spider mite (*Panonychus ulmi*). Wounds caused by canker were cut clean each winter.

The results were analyzed with the 'General Linear Model (GLM)' method and compared with Duncan's test.

### Results

Infections of apple scab did not become severe in 1989 due to dry weather. The mildew, canker and scab infections were larger in 1990 due to hot and not too dry weather special in the spring.

According to the evaluation of scab infection (Table 1), the cultivars can roughly be divided into 3 groups:

- 1: Cultivars with low susceptibility to scab: 'Discovery', 'Filippa' and 'Bramleys Seedling'.
- 2: Cultivars with medium susceptibility to scab: 'Transparente Blanche', 'Skovfoged', 'Ingrid Marie', 'James Grieve', 'Red Ananas', 'Ildrod Pigeon' and 'Belle de Boskoop'.
- 3: Cultivars with high susceptibility to scab: 'Mutsu', 'Summerred', 'Gravenstein', 'Guldborg' and 'Cox's Orange'.

**Table 1. Evaluation of 15 apple cultivars for susceptibility to apple scab. Percent fruits without scab and rating for scab infection on two locations.**

| Cultivar               | Location | Percent fruits without scab |        | Score for scab infection (1-10) |         |
|------------------------|----------|-----------------------------|--------|---------------------------------|---------|
|                        |          | 1                           | 2      | 1                               | 3       |
| 'Discovery'            |          | 95 a                        | 76 abc | 1.4 h                           | 1.0 d   |
| 'Filippa'              |          | 91 a                        | 91 a   | 1.8 gh                          | 1.7 cd  |
| 'Bramleys Seedling'    |          | 81 b                        | 88 a   | 2.0 g                           | 1.3 cd  |
| 'Red Ananas'           |          | 78 bc                       | 35 de  | 3.3 ef                          | 5.0 ab  |
| 'Belle de Boskoop'     |          | 72 cd                       | 71 abc | 2.9 f                           | 1.7 cd  |
| 'Transparente Blanche' |          | 70 cd                       | —      | 4.3 c                           | —       |
| 'Skovfoged'            |          | 71 cd                       | 49 bcd | 2.9 f                           | 2.0 cd  |
| 'Ingrid Marie'         |          | 58 e                        | 87 a   | 3.0 f                           | 1.7 cd  |
| 'Ildrod Pigeon'        |          | 63 de                       | 80 ab  | 3.7 d                           | 2.0 cd  |
| 'James Grieve'         |          | 57 e                        | 80 ab  | 3.4 de                          | 1.7 cd  |
| 'Guldborg'             |          | 45 f                        | 58 bcd | 4.3 c                           | 2.0 cd  |
| 'Cox's Orange'         |          | 47 f                        | 41 cd  | 3.6 de                          | 2.3 bcd |
| 'Gravenstein'          |          | 39 f                        | 77 ab  | 4.3 c                           | 5.0 ab  |
| 'Summerred'            |          | 21 g                        | 5 e    | 6.4 a                           | 6.7 a   |
| 'Mutsu'                |          | 15 g                        | 0 e    | 4.7 b                           | 7.0 a   |

Numbers followed by the same letter in columns do not differ significantly for  $P \leq 0.05$ .

1) Location Aarslev 1988-1990.

2) Location Taastrup 1990.

3) Location Taastrup 1987, 1989, 1990 (on fruits).

**Table 2. Infections\* of powdery mildew, canker and fruit tree red spider mites of 15 cultivars. Average of 1988-1990, location Aarslev.**

|                        | Powdery mildew | Canker    | Spider mites |
|------------------------|----------------|-----------|--------------|
| 'Belle de Boskoop'     | 1.0 f          | 1.3 def   | 1.7 ef       |
| 'Bramleys Seedling'    | 1.0 ef         | 1.1 f     | 2.2 d        |
| 'Cox's Orange'         | 1.9 b          | 1.7 bcde  | 1.9 def      |
| 'Discovery'            | 1.1 ef         | 2.4 a     | 3.1 c        |
| 'Filippa'              | 1.1 def        | 1.1 f     | 3.9 b        |
| 'Gravenstein'          | 1.6 bc         | 1.8 bcd   | 1.7 ef       |
| 'Guldborg'             | 1.7 b          | 1.6 bcdef | 3.0 c        |
| 'Ildrod Pigeon'        | 3.1 a          | 1.9 abc   | 3.0 c        |
| 'Ingrid Marie'         | 1.3 def        | 1.6 bcdef | 2.0 de       |
| 'James Grieve'         | 1.4 cd         | 1.9 abc   | 2.1 d        |
| 'Mutsu'                | 1.1 def        | 1.8 bcde  | 1.6 f        |
| 'Red Ananas'           | 1.3 de         | 1.3 ef    | 4.3 a        |
| 'Skovfoged'            | 1.9 b          | 1.9 abc   | 1.9 def      |
| 'Summerred'            | 1.6 bc         | 1.5 cdef  | 2.1 de       |
| 'Transparente Blanche' | 1.7 bc         | 2.1 ab    | 2.1 de       |

\*Rated on a scale 1-10, 1 = no infection.

Numbers followed by the same letter in columns do not differ significantly for  $P \leq 0.05$ .

Assessing fruit free of scab or rating the level gave nearly identical results, however some variations exists depending upon year and location.

The level of powdery mildew, canker and fruit tree red spider mite infection for the 15 cultivars is presented in table 2.

Only 'Ildrod Pigeon' had a significant infection of mildew (Table 2).

Otherwise the level was low and the difference rather small. 'Discovery' had the highest and 'Bramleys Seedling' and 'Filippa' the lowest incidence of canker but the differences were small. The cultivars 'Red Ananas', 'Filippa', 'Discovery', 'Guldborg' and 'Ildrod Pigeon' were susceptible to fruit tree red spider mite. Infection by aphids was too low to report.

**Table 3. Susceptibility of 15 apple cultivars to scab and powdery mildew compared to results of other researchers.**

| Cultivar               | Scab                           | Powdery mildew                   |
|------------------------|--------------------------------|----------------------------------|
| 'Belle de Boskoop'     | Low (4, 5) Medium (0, 2, 3)    | Low (0, 4, 11)                   |
| 'Bramleys Seedling'    | Low (0, 3, 5, 12)              | Low (0, 8, 10, 12)               |
| 'Cox's Orange'         | Low (5) Medium (2, 3) High (0) | Medium (0, 8, 10) High (6, 7)    |
| 'Discovery'            | Low (0, 5) Medium (2, 12)      | Low (0, 6, 7, 8, 12)             |
| 'Filippa'              | Low (0, 5)                     | Low (0, 10)                      |
| 'Gravenstein'          | Low (12) Medium (1) High (0)   | Low (1, 12) Medium (0) High (10) |
| 'Guldborg'             | Low (5) High (0)               | Medium (0) High (10)             |
| 'Ildrod Pigeon'        | Medium (0, 5)                  | High (0, 12)                     |
| 'Ingrid Marie'         | Low (5) Medium (0, 2)          | Low (0) Low-Medium (10)          |
| 'James Grieve'         | Low (5) Medium (0, 2, 4)       | Low (0) Medium (13)              |
| 'Mutsu'                | Medium (1, 12) High (0, 2, 5)  | Low (0, 12) Medium (1)           |
| 'Red Ananas'           | Low (5) Medium (0)             | Low (0)                          |
| 'Skovfoged'            | Medium (0)                     | Medium (0)                       |
| 'Summerred'            | Medium (1) High (0, 5, 12)     | Medium (0, 1, 12)                |
| 'Transparente Blanche' | Medium (0, 1)                  | Medium (0, 1) High (10)          |

L = Low susceptibility; M = Medium susceptibility; H = High susceptibility.

1-13 referring the number of the literature in the literature list.

0 = present study.

### Discussion

The susceptibility of the 15 cultivars to scab and powdery mildew are compared to the results of other researchers (Table 3). Observations on susceptibility to canker is in agreement with studies in Germany (9) and in Poland (13). However, these results included only 6 of the cultivars in the present study.

The authors do not always agree about the susceptibility of different cultivars. Especially in the cultivars 'Cox's Orange' and 'Gravenstein' there are variations between the informations. The investigators of 'Bramleys Seedling' and 'Filippa' agree that these cultivars are rather low susceptible. 'Mutsu' and 'Summerred' seem to be susceptible to scab everywhere.

### Conclusions

This study showed that 'Discovery', 'Filippa' and 'Bramley's Seedling' had the lowest susceptibility to scab and mildew. But 'Discovery' is susceptible to canker and 'Filippa' and 'Discovery' are susceptible to spider mites. For that reason these cultivars are not perfect to grow in low pest management systems. Breeding is the best way to generate healthy cultivars with low susceptibility or resistance to pests.

### Literature Cited

1. Aldwinckle, H. S. 1974. Field susceptibility of 51 apple cultivars to apple scab and apple powdery mildew. Plant Disease Reporter 58:625-629.
2. Blazek, J., J. Kloutvor & J. Vondracek. 1977. The susceptibility of the important apple cultivars to scab *Venturia inaequalis* (Cke) Wint. Wedecke Prace Ovocnarske 6:61-79.
3. Blommers, L. 1983. Apple scab in mixed stands: varietal susceptibility and field resistance. Bull. SROP, V1/4:67-79.
4. Cimanowski, J., W. Dzieciol & B. Kowalik. 1988. Evaluation of susceptibility of 22 apple varieties to apple scab (*Venturia inaequalis*) and apple powdery mildew (*Podosphaera leucotricha*). Fruit Science Reports 15:81-84.
5. Hansen, P. & K. K. Andersen. 1985. Æblesorter og skurv mod tagelighed. Frugtavleren 14:82-183.
6. Jeger, M. J., D. J. Butt. 1983. Using partial resistance in the integrated control of apple powdery mildew. Bulletin SROP, WPRS bulletin, V1/4:111-122.
7. Jeger, M. J. & D. J. Butt. 1986. Epidemics of apple powdery mildew (*Podosphaera leucotricha*) in a mixed orchard. Plant Pathology 35:498-505.
8. Jeger, M. J., D. J. Butt & A. A. Swait. 1986. Components of resistance of apple to powdery mildew (*Podosphaera leucotricha*). Plant Pathology 35:477-490.
9. Krüger, J. 1983. Anfälligkeit von Apfelsorten und Kreuzungsnachkommen für den Obstbaumkrebs nach natürlicher und künstlicher Infection. Erwerbostbau 25:114-116.
10. Mygind, H. 1963. Meldug med særlig omtale af æblemeldug. Tidsskr. Planteavl 67:255-320.
11. Mygind, H. 1965. Undersøgelse af nogle faktorer som påvirker æblemelduggens livsløb. Tidsskr. Planteavl 69:216-239.
12. Norton, R. A. 1981. Field susceptibility of apple cultivars to scab, *Venturia inaequalis* and powdery mildew, *Podosphaera leucotricha* in a cool, humid, climate. Fruit Var. J. 3:2-5.
13. Zagaja, S. M., D. F. Millikan, W. Kaminski & T. Myszka. 1971. Field resistance to *Nectria galligena* canker in apple. Plant Disease Reporter 55:445-447.

### NOTICE FOR PAPERS U. P. HEDRICK AWARDS

This year there will be a first prize of \$300 with mounted certificate and a second prize of \$100 with a certificate. Papers must be sent to Dr. Robert Crassweller, Horticulture Department, Penn State University, University Park, PA 16083 *by May 1, 1994*. See the Journal for editorial style; paper length about 1000 words or 3 to 4 pages total. Paper content: Related to tropical or deciduous cultivars as influenced by climate, soil, rootstock, breeding or the history or performance of new or old cultivars. Science and review type papers will be judged separately.