

High Temperature Effects on CO₂ Assimilation Rate in Genotypes of *Fragaria xananassa*, *F. chiloensis* and *F. virginiana*

SEDAT SERCE¹, PETER W. CALLOW¹, HO-JOENG HO² AND JAMES F. HANCOCK¹

Abstract

CO₂ assimilation rates (A) in two *Fragaria xananassa* cultivars, ten native *F. chiloensis* genotypes, and nine native *F. virginiana* genotypes were compared in growth chambers held at two day/night temperature regimes: 20/15°C and 30/25°C. Light intensity (PAR) was maintained at 500 $\mu\text{mol m}^{-2}\text{ s}^{-1}$ and day lengths were held at 14 hours. At 20/15°C, *F. virginiana* had significantly lower A (10.4 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) than either *F. xananassa* (11.6 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) or *F. chiloensis* (11.7 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$). All species showed a significant reduction in A at 30/25°C; however, *F. virginiana* dropped the least at 24%, while *F. xananassa* fell 42% and *F. chiloensis* dropped 54%. 'Seascape' and 'Tribute' had intermediate levels of A under cool temperatures (12.8 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ and 10.4 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) and their CO₂ assimilation rates were reduced by 39-44% by high temperatures. Several *F. chiloensis* genotypes had higher A than the *F. xananassa* genotypes under cool temperatures, but they were more negatively effected by high temperatures. In *F. virginiana*, LH 50-4 and RH 18 had A values comparable to 'Seascape' and 'Tribute', and they showed more modest reduction in A at high temperatures (< 5%). These two genotypes may be good parents to improve heat tolerance in cultivated day-neutral germplasm.

Introduction

While the cultivated strawberry, *F. xananassa* Duchesne in Lamarck, is grown across an enormous environmental range; its progenitor species, *F. chiloensis* (L.) Miller and *F. virginiana* Miller have an even broader range (15). The utilization of the wild germplasm could be useful in strawberry improvement, particularly in the development of day-neutral cultivars, since one of the major factors limiting productivity in strawberry cultivars is mid-summer heat (16). High temperatures reduce day-neutral yield, cause smaller, softer fruits in the middle months of summer (7, 10) and inhibit flower bud initiation (8, 10, 29).

While the three octoploid species have never been compared together in the same study, reported values for the CO₂ assimilation rate (A) in *F. xananassa* range from 15 - 25 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ (11), which is intermediate to published values of 7 - 15 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ for *F. virginiana* (19) and 20 - 30 $\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ *F. chiloensis* (4). Several factors can affect A of strawberries including: light level (3, 9,

21), nutrient availability (21, 23), CO₂ concentration (3), developmental stage (19, 20), cultural systems (1), mode of propagation (5), and removal of flowers, runners (24) and fruits (6, 22, 26, 27, 28).

The objectives of this study were: 1) compare A in *F. xananassa* and its progenitor species in a common environment, 2) determine the effect of high temperature on A in these octoploid species, and 3) discover if there is genetic variation in the photosynthetic heat tolerance of *F. chiloensis*, *F. virginiana*, and *F. xananassa*.

Material and Methods

The genotypes studied were: 1) day-neutral *F. xananassa*: 'Seascape' and 'Tribute', 2) short-day *F. chiloensis*: BRA 1A (PI 612316), CAR 2A (PI 602570), FRA 0596, FRA 0688 (PI 612487), FRA 0883, FRA 1267 (PI 612488), NAH 5 (PI 612318), PAL 2C (PI 602568), Scotts Creek (PI 612490), and TAB 4B (PI 612317), 3) day-neutral *F. virginiana*: LH 30-4 (PI 612501), LH 50-4 (PI 612495), RH 23 (PI 612498), RH 30 (PI 612499), RH 43 (PI 612496), and 4) short-day *F. vir-*

¹Dept. Horticulture, Michigan State University, East Lansing, MI 48824

²Pusan Horticultural Experiment Station, Pusan, Korea

giniana: Eagle 14 (PI 612492), N8420, Montreal River-10 (PI 612497), and RH 18. Further information on the horticultural characteristics of these genotypes can be found in Hancock et al. (17, 18) and www.berrygenetics.org.

Runners from greenhouse grown plants were rooted under mist and then planted into a commercial peat and perlite potting mixture in 15 x 5 x 5cm pots. Two weeks after potting, they were placed in two growth chambers in a randomized complete block design. Two replicates of each genotype were placed in individual growth chambers held at either 20/15°C (day/night) or 30/25°C, under 500 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ photosynthetic active radiation (PAR) and 14-hour-days. The plants were allowed to acclimate to the growth chambers conditions for one month, and then the CO_2 assimilation rate (A) ($\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) of each plant was recorded three times weekly for three weeks. The gas exchange measurements were made within the growth chambers using an Analytical Development Company portable photosynthesis system equipped with a Parkinson broad leaf chamber (Hoddesdon, England). Depletion of CO_2 by a 6.25-cm² area of a single leaf in the chamber was monitored at a flow rate of 0.41 min⁻¹ using ambient air from outside the growth chamber (340 - 360 $\mu\text{ liter}^{-1}\text{ CO}_2$). On each recording date, the A of three individual leaves of each plant were measured, and the mean values for each plant were used in further analysis. Analysis of variance and significant mean separations were evaluated using the GLM procedure of the SAS (25). Subspecies were nested in species, and genotypes were nested in subspecies and species.

Results

There was not significant variability detected across replication in either of the temperature regimes (Table 1), indicating that the two samples of each genotype performed similarly within treatment. Significant variation in A was observed among species and genotypes at 20/15°C and 30/25°C, and among subspecies at 20/15°C.

Significant variation was also observed among species, subspecies and genotypes for % ΔA (the percentage change in A at 30/25°C compared to 20/15°C).

Overall, *F. virginiana* had significantly lower A under cool conditions (10.4 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) than *F. xananassa* (11.6 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) and *F. chiloensis* (11.7 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$), but A in *F. virginiana* was only reduced by 24% at high temperatures compared to 42% in *F. xananassa* and 54% in *F. chiloensis* (Table 1; Fig. 1). The cultivated races of *F. chiloensis* ssp. *chiloensis* f. *chiloensis* had significantly higher A (14.8 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$) than any of the other taxa (98.3 to 10.3 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$), although this value was based on only two genotypes. A in all the taxa of *F. chiloensis* was dramatically reduced at high temperatures (50-56%), while *F. virginiana* ssp. *glauca* and *F. virginiana* ssp. *virginiana* fell by only 19 and 29%.

'Seascape' and 'Tribute' had about average A under cool conditions (10.4 vs. 12.8 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$), but A was reduced in both cultivars by 39-44% under high temperatures (Table 1 and Fig. 1). Under cool conditions, A in *F. chiloensis* genotypes ranged from 7.8 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ (TAP 4B) to 15.3 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ (Scotts Creek), while genotypes of *F. virginiana* ranged from 6.0 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ (LH 30-4) to 13.8 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$ (N8420). FRA 0883 (80%) and Scotts Creek (70%) showed the highest reduction in A at high temperature among the *F. chiloensis* genotypes and FRA 0688 (24%) had the lowest reduction. In *F. virginiana*, RH 43 showed a slight increase in A at high temperature (+ 6%) and LH 50-4 (-5%) and RH 18 (-14%) were only slightly reduced. RH 18 and LH 50-4 also had among the highest A of all *F. virginiana* genotypes (11.1 and 12.8 $\mu\text{ mol CO}_2\text{ m}^{-2}\text{ s}^{-1}$). The least heat tolerant genotypes of *F. virginiana* were Eagle 14 (-49%) and Montreal River-10 (-44%).

Discussion

As in previous studies, we found mean A in *F. chiloensis* to be significantly high-

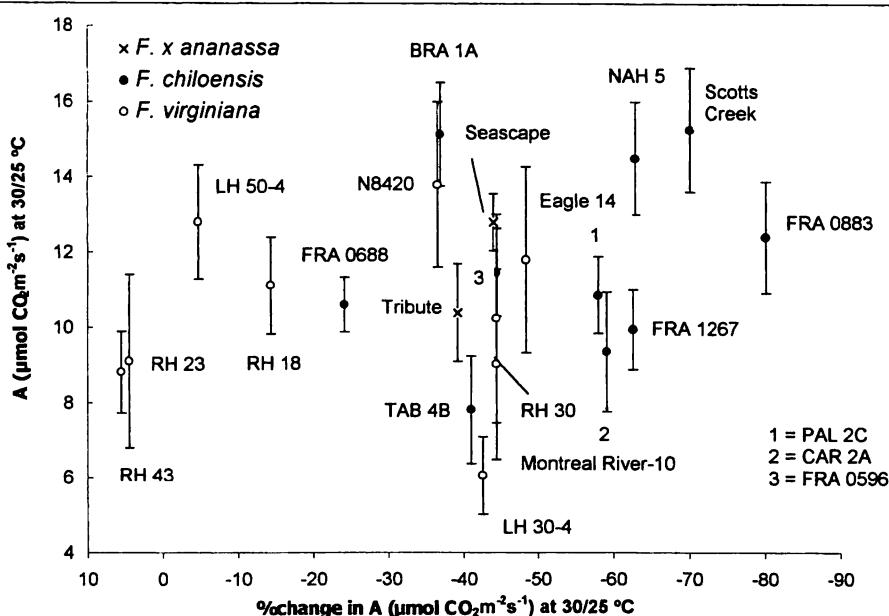


Figure 1. Mean CO₂ assimilation rates (A) of *F. xananassa* cultivars and elite *F. chiloensis* and *F. virginiana* genotypes grown under cold (20/15°C) and hot (30/25°C) temperature regimes.

er than *F. xananassa* at moderate temperatures (4, 12), although a considerable amount of variation was observed among genotypes of *F. chiloensis*. Our work is also in agreement with other studies that found mean A in *F. virginiana* to be generally lower than *F. xananassa* at moderate temperatures (19, 20).

Overall, *F. chiloensis* did poorer than *F. virginiana* and *F. xananassa* under high temperature. These results are consistent with Caldwell et al. (2) who found that *F. virginiana* was superior to *F. chiloensis* at acclimating to high temperature. This is not surprising, as *F. chiloensis* is found in a narrow band along the Pacific Ocean from California to Alaska and in Chile where temperatures are moderate and relatively stable, while *F. virginiana* is located in continental climates that are more subject to high temperatures and daily fluctuations. Still, considerable variability was found among the *F. chiloensis* sub-species and genotypes, with the cultivated

forms of *F. chiloensis* ssp. *chiloensis* f. *chiloensis* having much higher A than the wild forms, and BRA 1A from Chile and FRA 0688 from British Columbia displaying much higher photosynthetic heat tolerance than the other *F. chiloensis* genotypes. Genotypes of *F. virginiana* also showed substantial variability, with *F. virginiana* ssp. *glaucia* genotypes being generally more stable across low and high temperature than *F. virginiana* ssp. *virginiana*. This may also relate to habitat, as *F. virginiana* ssp. *glaucia* is found in mountainous areas with higher daily temperature fluctuations than *F. virginiana* ssp. *virginiana* which exists in hot, but less variable continental climates (14).

Most of the *F. virginiana* genotypes showed higher photosynthetic heat stability than the two day-neutral *F. xananassa* cultivars we examined, indicating that the native genotypes could be a valuable source of genes for breeding for heat tolerant strawberry cultivars. In particular, LH

Table 1. Analysis of variance for CO₂ assimilation rates of *F. xananassa* cultivars and elite *F. chiloensis* and *F. virginiana* genotypes under cool (20/15°C) and hot (30/25°C) temperature regimes.

	Geographical origin	Growth conditions		
		20/15°C	30/25°C	%ΔA ¹
Species				
<i>F. xananassa</i>		11.6	7.0	-42
<i>F. chiloensis</i>		11.7	5.5	-54
<i>F. virginiana</i>		10.4	7.8	-24
SubSpecies				
<i>F. chiloensis</i> ssp. <i>chiloensis</i> f. <i>chiloensis</i>		14.8	7.7	-50
<i>F. chiloensis</i> ssp. <i>chiloensis</i> f. <i>patagonica</i>		9.3	4.5	-53
<i>F. chiloensis</i> ssp. <i>pacifica</i>		11.9	5.3	-56
<i>F. virginiana</i> ssp. <i>glauca</i>		10.6	8.9	-19
<i>F. virginiana</i> ssp. <i>virginiana</i>		10.3	7.0	-29
Genotypes				
BRA 1A	Chile (Region X)	15.1	9.9	-37
CAR 2A	Chile (Region XI)	9.4	4.0	-59
Eagle 14	Ontario	11.8	6.8	-49
FRA 0596	British Columbia	11.5	6.4	-45
FRA 0688	British Columbia	10.6	8.4	-24
FRA 0883	British Columbia	12.4	2.9	-80
FRA 1267	British Columbia	10.0	3.9	-63
LH 30-4	Montana	6.0	3.6	-43
LH 50-4	Montana	12.8	12.4	-5
Montreal River-10	Ontario	9.0	4.6	-44
NAH 5	Ecuador	14.5	5.6	-63
N8420	Minnesota	13.8	9.1	-37
PAL 2C	Chile (Region XI)	10.9	4.6	-58
RH 18	New York	11.1	10.6	-14
RH 23	Minnesota	9.1	8.0	+4
RH 30	Minnesota	10.2	4.8	-44
RH 43	Alaska	8.8	9.5	+6
Scotts Creek	California	15.3	4.9	-70
Seascape	Cultivar	12.8	7.3	-44
TAB 4B	Chile (Region XI)	7.8	4.8	-41
Tribute	Cultivar	10.4	6.7	-39
ANOVA				
	df		Mean Square	
Replication	1	8.0	95.1	9.0
Species (S)	2	31.1* ²	10544.5***	55.5**
Subspecies (SS)/S	3	73.0***	550.9	40.4*
Genotype(G)/S, 22	15	23.4*	2440.2***	31.9*
Sub-plot error	20	11.3	475.4	15.5
Week (W)	2	13.4	1373.5*	11.0
W*S	4	23.1*	450.2	9.3
W*SS(S)	6	8.3	714.2	6.7
W*G(S*SS)	30	8.5	503.3	13.0
Whole-plot error	40	9.3	532.2	532.2

¹% change in A at 30/25°C compared to 20/15°C.^{2*}, ^{3**}, ^{4***} Significant at 0.10, 0.05, and 0.01 respectively.

50-4 and RH 18 had values for A at cool temperatures comparable to 'Seascape' and 'Tribute', with a much more modest reduction in A at high temperatures. In previous studies, we have found that the highest yielding cultivars often have the least variability in A across environments (12), although this is not always the case (13).

Of particular utility in strawberry breeding would be to find new sources of day-neutrality that were also heat tolerant, as most of the existing day-neutral cultivars do poorly under warm summer conditions (7, 10). Among the most tolerant genotypes uncovered in this study, RH 18 is a short-day type, but LH 50-4 is a day-neutral that has previously been identified as superior for other horticultural traits (17, 18).

Literature Cited

1. Albergits, E.E. and C.M. Howard. 1986. Effect of runner removal on strawberry fruiting response. *HortScience* 21:97-98.
2. Caldwell, J.D., J.F. Hancock, and J.F. Flore. 1990. Strawberry leaf photosynthesis acclimation to temperature. 25:166 (Abstract)
3. Cameron, J.S. 1986. Factors influencing phenotypic variability in micropropagated strawberry (*Fragaria x ananassa*) cultivars. Ph.D. Thesis. Michigan State University, East Lansing, Michigan.
4. Cameron, J.S. and C.A. Hartley. 1990. Gas exchange characteristics of *Fragaria chiloensis* genotypes. *HortScience* 25:327-329.
5. Cameron, J.S., J.F. Hancock, and J.A. Flore. 1989. The influence of micropropagation on yield components, dry matter partitioning and gas exchange characteristics of strawberry. *Scientia Horticulturae* 38:61-67.
6. Choma, M.A., J.L. Garner, R.P. Marini, and J.A. Barden. 1982. Effects of fruiting on net photosynthesis and dark respiration of 'Heckert' strawberries. *HortScience* 17:212-213.
7. Draper, A.D., G.J. Galletta, and H.J. Swartz. 1981. 'Tribute' and 'Tristar' everbearing strawberries. *HortScience* 16:794-796.
8. Durner, E.F., J.E. Barden, D.G. Himelrick and E.B. Poling. 1984. Photoperiod and temperature effects on flower and runner development in day-neutral, Junebearing and everbearing strawberries. *J. Amer. Soc. Hort. Sci.* 109:396-400.
9. Ferree, D.C. and E.J. Stang. 1988. Seasonal plant shading, growth and fruiting in 'Earliglow' strawberry. *J. Amer. Soc. Hort. Sci.* 113:322-327.
10. Galletta, G.J., A.D. Draper, and H.J. Swartz. 1981. New everbearing strawberries. *HortScience* 16:726.
11. Hancock, J.F., J.A. Flore, and G.J. Galetta. 1989. Gas exchange properties of strawberry species and their hybrids. *HortScience* 19:412-413.
12. Hancock, J.F., J.A. Flore, and G.J. Galetta. 1989. Variation in leaf photosynthetic rates and yield in strawberries. *J. Hort. Sci.* 64:449-454.
13. Hancock, J.F., S.C. Hokanson, P.W. Callow, M. Sakin, K. Haghghi, and J.A. Flore. 1992. Performance of Californian and Eastern U.S. Strawberry cultivars under conditions mimicking eastern production systems. *J. Amer. Soc. Hort. Sci.* 117:991-995.
14. Hancock, J.F., M. Sakin, J.J. Luby, A. Dale, and R.L. Darnell. 1996. Germplasm resources in octoploid strawberries: potential sources of genes to increase yields in northern climates. *Proc. IV North American Strawberry Conference*. Orlando, Florida. pp. 87-94.
15. Hancock, J.F. 1999. Strawberries. CABI Publishing, Wallingford, UK.
16. Hancock, J.F. 2001. Strawberries. In: A. Enez (ed.). *Temperate fruit crops in warm climates*. Kluwer Academic Publisher, the Netherlands.
17. Hancock, J.F., C.A. Finn, S.C. Hokanson, J.J. Luby, B.L. Goulart, K. Demchak, P.W. Callow, S. Serce, and A. Schilder. 2001a. A multi-state comparison of native octoploid strawberries from North and South America. *J. Amer. Soc. Hort. Sci.* (In press).
18. Hancock, J.F., P.W. Callow, A. Dale, J.J. Luby, C.E. Finn, S.C. Hokanson, and K.E. Hummer. 2001b. From the Andes to the Rockies: Native strawberry collection and utilization. *HortScience* 36:221-225.
19. Jurik, T.W. 1983. Reproductive effort and CO₂ dynamics of wild strawberry populations. *Ecology* 64:1329-1342.
20. Jurik, T.W., J.F. Cabot, and B.F. Cabot. 1979. Ontogeny of photosynthetic performance in *Fragaria virginiana* under changing light regimes. *Plant Physiology* 63:542-547.
21. Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO₂ exchange, and anatomy in wild strawberry (*Fragaria virginiana*). *Plant Physiology* 70:1044-1048.
22. Lenz, F. 1974. Fruit effects on formation and distribution of photosynthetic assimilates. In: Antoszewski, R., L. Harrison, and J. Nwosielski (eds). *Proceedings of the XIXth International Horticultural Congress*, pp.155-166.
23. Moon, J.W., D.A. Baley, E. Fallahi, R.G. Jensen, and G. Zhu. 1990. Effect of nitrogen application on growth and photosynthetic nitrogen use

efficiency in two ecotypes of wild strawberry, *Fragaria chiloensis*. *Physiologia Plantarum* 80:612-618.

24. Pritts, M.P. and K.A. Worden. 1988. Effects of duration of flower and runner removal on productivity of three photoperiod types of strawberries. *J. Amer. Soc. Hort. Sci.* 113: 185-189.

25. SAS Institute Inc., 1990. SAS users guide; SAS/STAT, version 6. SAS Institute Inc., Cary, N.C.

26. Schaffer, B., J.A. Barden, and J.M. Williams. 1985. Partitioning of [¹⁴C]-photosynthate in fruiting and deblossomed day-neutral strawberry plants. *HortScience* 20:911-913.

27. Schaffer, B., J.A. Barden, and J.M. Williams. 1986. Net photosynthesis, dark respiration, stomatal conductance, specific leaf weight, and chlorophyll content of strawberry plants as influenced by fruiting. *J. Amer. Soc. Hort. Sci.* 111:82-86.

28. Schaffer, B., J.A. Barden, and J.M. Williams. 1986. Whole plant photosynthesis and dry matter partitioning in fruiting and deblossomed day-neutral strawberry plants. *J. Amer. Soc. Hort. Sci.* 111:430-433.

29. Strick, B. 1985. Flower bud initiation in strawberry cultivars. *Fruit Var. J.* 39:5-9.

Call for Papers U. P. HEDRICK AWARDS

A cash award of \$300 with mounted certificate will be awarded the winning student paper. Papers should be submitted to Dr. Robert Crassweller, Horticulture Department, Penn State University, University Park, PA 16083 by May 30, 2002. See the journal for editorial style; paper length about 1000 words or 3 to 4 pages total. Pages can relate to any research aspect with fruit cultivars or rootstocks as influenced by environmental or cultural techniques. Breeding or the history or performance of new or old cultivars can be reviewed. Research and review papers will be judged separately.

Strawberry - Anthocyanin

The transcript level of PAL and CHS genes did not change markedly throughout strawberry fruit development. The transcript level of chaconne isomerase (CHI) and dihydroflavonol 4 - reductase (DFR) gene was high in young fruit, decreased to an almost undetectable level at the white - mature stage, and then increased again until fully ripe stage paralleling the accumulation of anthocyanin. From Li et al. *J.Japan.Soc.Hort. Sci* 70(1):28-32.

ABA - Apple Nursery Trees

Sprays of ABA enhanced apple shoot growth cessation and bud dormancy which were closely related. Maximum growth cessation and bud dormancy were attained in mid-December with similar results for both treated and untreated. Stem cold hardiness in early November was enhanced by ABA. ABA enhanced N mobilization from leaves into perennial woody tissue. From Guak and Fuchigami 2001. *J. Hort. Sci. Biotech.* 76(4):459-464.