

The Activities of SOD, POD, and CAT in 'Red Spur Delicious' Apple Fruit Are Affected by DPA but Not Calcium in Postharvest Drench Solutions

NADEEM A. ABBASI^{1,2} AND MOSBAH M. KUSHAD¹

Abstract

This study was designed to determine the effect of diphenylamine (DPA) and CaCl_2 on activities of antioxidant enzymes: superoxide dismutase (SOD: EC 1.1.15.1.1), catalase (CAT: EC 1.11.1.6), and peroxidase (POD: EC 1.11.1.7) during storage of apple fruits and to correlate changes in these enzymes to scald development and fruit maturity. Fruits from 'Red Spur Delicious' apples at early mature, full mature, and over mature stages were treated with 2000 ppm DPA (diphenylamine) shortly after harvest and stored at -1°C . DPA treatment did not affect flesh firmness, soluble solids, or starch rating at harvest or after 6 months in storage. DPA treatment prevented the storage related increase in POD activity, enhanced the SOD and CAT activities and reduced the scald development during storage in early and full mature fruit. The CaCl_2 treatments (1 and 2%) maintained higher flesh firmness and increased CAT activity, but had no significant effect on POD and SOD activities.

Introduction

Synthetic antioxidant diphenylamine (DPA) is used to control superficial scald commercially in apple fruit (*Malus xdomestica* Borkh) (32), and was found to maintain a high level of reducing power and hence slowed the senescence process (21).

Superficial scald is an important physiological storage disorder of apple fruit. The importance of oxidation processes in the etiology of scald development has led many authors to evaluate natural and synthetic molecules with antioxidant properties capable of reducing scald (3). Endogenous high levels of antioxidants at harvest have been associated with reduced susceptibility to scald (23). However, the role of naturally occurring antioxidant enzymes, such as superoxide dismutase (SOD; EC 1.1.15.1.1), catalase (CAT: EC 1.11.1.6), and peroxidase (POD; EC 1.11.1.7) in scald development has not been fully investigated. These enzymes have been described as a defensive team, whose combined effect is to minimize exposure of cells to reactive intermediates of

dioxygen reduction (12, 13). In addition to the endogenous antioxidants pool, mineral elements (like calcium) were also found to be negatively correlated with scald development (4, 7).

The objectives of the present study were to determine the influence of postharvest drench materials, DPA and CaCl_2 , on activities of the antioxidant enzymes (SOD, CAT, and POD) and the association of these enzymes activities with scald development in apple fruit.

Materials and Methods

Fruits for this study were harvested from 25-year-old-apple (*Malus xdomestica* Borkh cv. 'Red Spur Delicious') trees grafted on MM.106 rootstock grown at the Pomology Research Center, University of Illinois at Urbana-Champaign. To determine the effect of DPA on enzymes activities and scald development, fruits harvested at early mature, commercially mature, and at over mature stages were dipped in a solution of 2,000 ppm DPA immediately after harvest. Flesh firmness, soluble solids, and starch content were

¹ Department of Natural Resources and Environmental Sciences 279 ERML, 1201 W. Gregory Dr., University of Illinois, Urbana, IL 61801, USA.

² Current Address: University of Arid Agriculture, Rawalpindi, Pakistan
E-mail: nadeemabbasi65@yahoo.com and kushad@staff.uiuc.edu

measured on treated and untreated (control) fruit before and after six months storage at -1°C.

A 5-6 g fresh peel (from 5 fruits) per treatment from each of the three replications was ground in liquid nitrogen using a mortar and pestle. The powdered tissue was suspended in 15 ml of 100 mM KPO₄ buffer (pH 7.8), containing 0.5% [v/v] triton X-100 and 1g PVPP. The mixture was centrifuged at 18,000xg at 4°C for 30 min and the supernatant was collected and stored at -80°C for the analysis of enzymes activities. SOD, CAT and POD enzymes activities were assayed in the supernatant from fruits of each treatment according to Abassi et al. (1).

A scald rating was recorded after removal of fruit from storage. Scald severity ratings were: light (less than about 10% of the surface affected), medium (10-50% of surface affected), and severe scald (50-100% of surface affected). The following equation was

used to calculate scald index:

$$\text{Scald index} = [(\% \text{ incidence of light scald} \times 1) + (\% \text{ incidence of medium scald} \times 2) + (\% \text{ incidence of severe scald} \times 4)]/4$$

Another set of fruits harvested at commercial maturity was treated with 0%, 1%, 2% CaCl₂ and then stored at -1°C for 3 months. Fruits were evaluated for ethylene evolution, flesh firmness, soluble solids, and starch, and the enzyme activities were completed as previously noted.

Results and Discussion

DPA treatment did not affect flesh firmness, soluble solids, or starch rating after 6 months of storage. However, this treatment reduced scald rating significantly in early mature fruits (Table 1). Previous studies have shown inconsistent results regarding DPA effect on fruit firmness. Few studies (20, 21) have reported higher firmness retention in DPA treated apple fruits. A later study (22)

Table 1: Effect of storage and DPA treatments on firmness, soluble solids, starch, and scald of 'Red Spur Delicious' apples.

Maturity	Storage (Months)	DPA 2000ppm	Firmness (N)	S.S. (%)	Starch ^a index	Scald index ^b
Early mature	0	Control	85.4 a	9.3 e	1.4 d	--
	0	DPA	82.9 a	9.4 e	1.3 d	--
	6	Control	66.6 cd	12.8 a	9.0 a	42.5 a
	6	DPA	68.1 c	12.5 a	9.0 a	15.8 b
Full mature	0	Control	77.4 b	9.9 d	3.7 c	--
	0	DPA	77.4 b	10.1 cd	3.8 c	--
	6	Control	65.1 cd	12.7 a	9.0 a	4.2 bc
	6	DPA	65.7 cd	12.8 a	9.0 a	1.7 cd
Over mature	0	Control	76.2 b	10.5 bc	5.1 b	--
	0	DPA	75.4 b	10.9 b	5.2 b	--
	6	Control	64.3 d	13.1 a	9.0 a	1.0 cd
	6	DPA	65.2 cd	13.1 a	9.0 a	0.0 d

Different letters within column denote significant difference at $p = 0.05$; means are separated according to Fisher's LSD.

^a1 = 100% starch and 9 = 0% starch.

^bScald Index = {(%light scald x 1) + (%medium scald x 2) + (%severe scald x 4)}/4

Table 2: Effect of storage and DPA treatments on enzymes activities of 'Red Spur Delicious' apples.

Maturity	Storage (months)	DPA 2000ppm	POD ΔO.D. min ⁻¹ mg ⁻¹ P	SOD u.g ⁻¹ fr.wt	Catalase u.g ⁻¹ fr.wt	Scald index ^a
Early mature	0	Control	0.58 d	34.16 d	13.78 e	--
	0	DPA	0.62 d	35.25 d	14.86 e	--
	6	Control	1.68 a	69.95 c	20.32 d	42.5 a
	6	DPA	0.95 c	89.43 b	28.70 c	15.8 b
Full mature	0	Control	0.49 d	23.11 e	12.61 e	--
	0	DPA	0.50 d	24.08 e	15.42 e	--
	6	Control	1.18 b	87.29 b	32.25 c	4.2 bc
	6	DPA	0.51 d	105.29 a	47.95 a	1.7 cd
Over mature	0	Control	0.69 d	19.00 f	15.93 e	--
	0	DPA	0.52 d	21.65 ef	16.47 de	--
	6	Control	1.11 bc	90.57 b	41.64 b	1.0 cd
	6	DPA	0.51 d	103.50 a	42.20 b	0.0 d

Different letters within column denote significant difference at $p = 0.05$; means are separated according to Fisher's LSD.

^aScald Index = {(%light scald x 1) + (%medium scald x 2) + (%severe scald x 4)}/4

did not find any effect of DPA treatment on flesh firmness. Our data support studies that show no significant effect of DPA on flesh firmness.

Results in Table 2 indicate that there was an increase in POD activity with storage and DPA inhibited this increase. SOD and CAT activities were enhanced in DPA treated fruit during storage. Full mature fruit had lower POD activity while higher SOD and CAT activities as compared to early-mature fruit after 6 months storage. Increase in POD activity during storage confirms previous findings that POD activity peaks during fruit ripening and senescence (16, 28). These changes in POD activity might be linked to changes in its substrate (H_2O_2) concentration. H_2O_2 was reported to increase with the climacteric rise in ethylene production (6, 18). Previous studies have shown that in addition to its role in H_2O_2 removal, POD has been implicated in regulation of cell elongation (15), phenol oxidation (31), ethylene production (14), auxin breakdown (11), and chlorophyll degradation (17). POD is also involved in polymeriza-

tion of phenolics into brown pigments (19). Since scald results from polymerization of phenolic compounds, it is possible that DPA inhibition of scald may have resulted, at least in part, from inhibition of POD activity.

Plants which over-express SOD activity by genetic manipulation, were found to have enhanced oxidative stress protection (2, 8, and 26). Our finding of relatively higher SOD activity in mature apple fruits, which are less susceptible to scald (9), shows that mature fruits might have had higher ability to combat free radical damage by expressing higher SOD activity. Our study indicates that application of DPA enhanced the activity of the antioxidant enzyme SOD during storage and significantly reduced scald incidence. This suggests that DPA, in addition to its many other effects in controlling scald, might have also been involved in inducing the antioxidant enzyme SOD and hence increasing the endogenous antioxidant pool to prevent fruit damage by free radicals. These results disagree with the finding where DPA treatment had no significant effect on SOD activity as

compared to non-treated fruit (10).

Mature fruits have higher ability to produce antioxidants, including catalase, in response to free radicals to avoid possible membrane damage than do immature fruits (24, 29). Increase in catalase activity in mature, over-mature, and DPA treated fruits in this study (Table 2) is likely in response to an increase in H_2O_2 build-up.

Effect of $CaCl_2$ After three months in cold storage apple fruits treated with 2% $CaCl_2$ maintained significantly higher firmness compared to control fruits. Soluble solids, starch, and ethylene synthesis were not affected (Table 3). Ca plays a special role in maintaining the cell wall structure in fruits and other storage organs by interacting with the pectic acid in the cell walls to form calcium pectate. Thus, fruits treated with Ca are generally firmer than control (27, 30).

Only CAT activity at 2% $CaCl_2$ treatment was significantly increased while SOD and POD activities remained unaffected as compared to untreated fruit (Table 4). However, the increase in CAT activity was not paralleled by an increase in SOD activity. The build-up of H_2O_2 , which might has stimulated catalase activity in this case, may have been

produced from other sources i.e. photorespiration and lipid peroxidation (13, 32).

In conclusion, this study has identified a possible relationship between enzyme activities and DPA treatment during ripening, and scald development. In contrast to DPA, $CaCl_2$ treatment had no effect on antioxidant enzyme activities except catalase. DPA treatment and maturity were found to be involved in the inhibition of POD activities and enhancement of SOD and CAT activities during storage. This study also provides evidence that DPA treatment controls scald not only by inhibiting α -farnesene oxidation but also by affecting activities of enzymes associated with oxidative reactions. Association of increased SOD and CAT activities in mature and DPA treated fruits with reduced scald incidence, further support evidence that free radicals play an important role in the development of this disorder. However, biological levels of antioxidant enzymes are not sufficient to protect living tissue from harmful effects of free radicals (25). Therefore, genetic or physiologic manipulation of SOD and CAT along with other antioxidant enzymes may result in reducing scald damage and prolonging the shelf life of harvested produce.

Table 3: Changes in firmness, soluble solids, starch, and ethylene in $CaCl_2$ treated 'Red Spur Delicious' apples stored for three months

Storage (mo)	$CaCl_2$	Firmness (N)	Soluble solids (%)	Starch ^a	Ethylene $\mu l kg^{-1} hr^{-1}$
0	---	76.7 a	11.0 b	5.5 b	0.8 b
3	0% $CaCl_2$	69.9 b	12.7 a	7.5 a	8.5 a
3	1% $CaCl_2$	73.1 ab	12.7 a	7.3 a	7.8 a
3	2% $CaCl_2$	73.8 a	12.8 a	7.3 a	8.2 a

Different letters within column denote significant difference at $p = 0.05$; means are separated according to Fisher's LSD.

^a1 = 100%, 9 = 0% starch.

Table 4: Enzyme activity in CaCl_2 treated 'Red Spur Delicious' apples stored for three months

Storage	CaCl_2	POD $\Delta\text{O.D. min}^{-1} \text{mg}^{-1} \text{P}$	SOD	Catalase
			$\text{u.g}^{-1} \text{fr.wt}$	$\text{u.g}^{-1} \text{fr.wt}$
0	----	0.74 a	20.13 c	15.61 b
3	0% CaCl_2	0.92 a	87.64 b	18.04 b
	1% CaCl_2	0.75 a	88.40 b	17.19 b
	2% CaCl_2	0.70 a	88.91 b	23.17 a

Different letters within column denote significant difference at $p = 0.05$; means are separated according to Fisher's LSD.

Literature Cited

1. Abassi, N. A., M. M. Kushad, and A. G. Endress. 1998. Active oxygen-scavenging enzymes activities in developing apple flowers and fruits. *Scientia Hort.* 74: 183-194.
2. Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. *Plant Physiology* 107: 1049-1054.
3. Anet, E. F. and I. M. Coggiola. 1974. Superficial scald a functional disorder of stored apples. X. Control of a farnesene autoxidation. *J. Sci. Food Agr.* 25:293 298.
4. Bauchot, A. D., P. John, Y. Soria, and I. Recasens. 1995. Sucrose ester-based coatings formulated with food-compatible antioxidants in the prevention of superficial scald in stored apples. *J. Amer. Soc. Hort. Sci.* 120:491-496.
5. Bowler, C., M. V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. *Annu. Rev. Plant Mol. Biol.* 43:83-116.
6. Boyer, N. and G. D. Jaegher. 1986. Direct or indirect role of peroxidases in ethylene biosynthesis?, p. 47-60. In: H. Greppin, C. Penel, and Th. Gaspar (eds.). *Molecular and physiological aspects of plant peroxidases*. University of Geneva, Switzerland.
7. Bramlage, W. J., S. A. Weis, and M. Drake. 1985. Predicting the occurrence of poststorage disorders of 'McIntosh' apples from preharvest mineral analyses. *J. Amer. Soc. Hort. Sci.* 110:493-498.
8. Camp, W. V., H. Willekens, C. Bowler, M. V. Montagu, D. Inze, P. Reupold-Popp, H. Sandermann Jr, and C. Langebartels. 1994. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. *BioTechnol.* 12: 165-168.
9. Du, Z. and W. J. Bramlage. 1993. A modified hypothesis on the role of conjugated trienes in scald development on stored apples. *J. Amer. Soc. Hort. Sci.* 118:807-813.
10. Du, Z. and W. J. Bramlage. 1994. Superoxide dismutase activities in senescing apple fruit (*Malus domestica* Borkh.). *J. Food Sci.* 59:581-584.
11. Fils, B., F. X. Sauvage, and J. Nicholas. 1985. Tomato peroxidase purification and some properties. *Sci. Des Aliments.* 5:217.
12. Forney, C. F. 2003. Postharvest responses of horticultural products to ozone. P. 13-54. In: D.M. Hodges (ed), *Postharvest Oxidative Stress in Horticultural Crops*. Food Products Press, an Imprint of the Haworth Press, Inc, New York.
13. Fridovich, I. 1988. The biology of oxygen radicals: general concepts, p.1-5. In: B. Halliwell (ed.). *Oxygen radicals and tissue injury in proceedings of an Upjohn Symposium*. The Upjohn Co. Maryland.
14. Gaspar, Th., C. Penel, F. J. Castillo, and H. Greppin. 1985. A two-step control of basic and acidic peroxidases and its significance for growth and development. *Physiol. Plant.* 64: 418-423.
15. Goldberg, R., A. Imberty, M. Liberman, and R. Part. 1986. Relationships between peroxidatic activities and cell wall plasticity. In: H. Greppin, C. Penel, Th. Gaspar, eds, *Molecular and Physiological Aspects of Plant Peroxidases*. University de Geneve, Geneve, Switzerland, pp 209-220.
16. Gorin N. and F. T. Heidema. 1976. Peroxidase Activity in 'Golden Delicious' apples as a possible parameter of ripening and senescence. *J. Agric. Food chem.*, 24: 200-201.
17. Huff, A. 1982. Peroxidase-catalysed oxidation of chlorophyl by hydrogen peroxide *Citrus sinensis*, oranges. *Phytochemistry* 21(2): 261-265.

18. Kar, M. and D. Mishra. 1976. Catalase, peroxidase, and polyphenolase activities during rice leaf senescence. *Plant Physiol.* 57:315-319.
19. Lagrimini, L. M. 1991. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. *Plant Physiol.* 96:577-583.
20. Little, C. R. and H. J. Taylor. 1981. Orchard locality and storage factors affecting the commercial quality of Australian 'Granny Smith' apples. *HortScience* 56:323-329.
21. Lurie, S., J. Klien, and R. B. Arie. 1989. Physiological changes in diphenylamine treated 'Granny Smith' apples. *Isr. J. Bot.* 38:199-207.
22. Lurie, S., J. D. Klein, and R. B. Arie. 1990. Prestorage heat treatment inhibits superficial scald development during storage of 'Granny Smith' apples. *J. Hort. Sci.* 65:503-509.
23. Lurie, S. 2003. Antioxidants. P. 131-150. In: D.M. Hodges (ed), *Postharvest Oxidative Stress in Horticultural Crops*. Food Products Press, an Imprint of the Haworth Press, Inc, New York.
24. Meir, S. and W. J. Bramlage. 1988. Antioxidant activity in 'Cortland' apple peel and susceptibility to superficial scald after storage. *J. Amer. Soc. Hort. Sci.* 113:412-418.
25. Orr, W. C. and R. S. Sohal. 1994. Extension of life-span by overexpression of superoxide dismutase and catalase in *Drosophila melanogaster*. *Science* 263:1128-1130.
26. Perl, A., R. Perl-Treves, S. Galili, D. Aviv, E. Shalgi, S. Malkin, and E. Galun. 1993. Enhanced oxidative-stress defence in transgenic potato expression tomato Cu, Zn superoxide dismutases. *Theor. Appl. Genet.* 85:568-576.
27. Poovaiah, B. W. 1986. Role of calcium in prolonging storage life of fruits and vegetables. *Food Tech.* 58:86-89.
28. Prabha, T. N. and M. V. Patwardhan. 1986. Polyphenol oxidase (PPO) and peroxidase (POD) enzyme activities and their isoenzyme patterns in ripening fruits. *Acta Alim.* 15:199-207.
29. Rao, M. V., C. B. Watkins, S. K. Brown, and N. F. Weeden. 1998. Active oxygen species metabolism in superficial scald resistant and susceptible 'White Angel' x 'Rome Beauty' apple selections. *J. Amer. Soc. Hort. Sci.* 123:299-304.
30. Siddiqui, S. and F. Bangerth. 1993. Studies on cell wall mediated changes during storage of calcium-infiltrated apples. *Acta Hort.* 326:105-113.
31. Strivastava, O.P. and R. B. van Huystee. 1977. An interrelationship among peroxidase, IAA oxidase, and polyphenol oxidase from peanut cells. *Can. J. Bot.* 55: 153-161.
32. Watkins, C. B. and M. V. Rao. 2003. Genetic variation and prospects for genetic engineering of horticultural crops for resistance to oxidative stress induced by postharvest conditions. P. 199-224. In: D.M. Hodges (ed), *Postharvest Oxidative Stress in Horticultural Crops*. Food Products Press, an Imprint of the Haworth Press, Inc, New York.

CALL FOR PAPERS - U.P. HEDRICK AWARD

A cash award of \$300 with mounted certificate will be awarded to the winning student paper. Papers should be submitted to Dr. Robert Crassweller, Horticulture Department, Penn State University, University Park, PA 16803 by 30 May, 2006. See the Journal for editorial style; paper length about 1000 words or 3-4 pages total. Papers can relate to any research aspect with fruit cultivars or rootstocks as influenced by environmental or cultural techniques. Breeding or the history or performance of new or old cultivars can be reviewed. Research and review papers will be judged separately.