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Using Analysis of Covariance with Unequal Slopes
to Increase Efficiency and Information Obtained
from Designed Experiments

RicHARD P. MARINT' AND DANIEL WARD?

Abstract

Horticulturists often perform experiments involving both qualitative and quantitative factors. Sometimes the
quantitative factor is a continuous variable (covariate) measured on each experimental unit and data can be analyzed
by analysis of covariance (ANCOVA). ANCOVA is a powerful and flexible technique for extracting maximum
information from a data set. Data from an experiment designed to compare the productivity of three peach (Prunus
persica L. Batsch) genotypes were used to determine if genotype influenced average fruit weight, while account-
ing for the variation explained by the linear relationship between fruit weight and crop density. The data set was
analyzed with SAS’s MIXED procedure to demonstrate a strategy for analyzing experiments with a qualitative

variable plus a covariate.

Agricultural researchers employ statistical
techniques to help interpret experimental data.
Analysis of variance (ANOVA) is commonly
used to test the hypothesis that qualitative
treatments have an equal effect on a response
variable. Regression analysis is used to evalu-
ate the relationship between a response vari-
able and quantitative or continuous variables,
sometimes known as regressor variables or co-
variates. Analysis of covariance (ANCOVA)
is a special case of regression that combines
features of ANOVA and regression and the
linear model contains both qualitative and
one or more continuous variables measured
on each experimental unit. ANCOVA can be
used in two ways: 1.) as an error-reduction
technique, or 2.) multiple regression with a
mixture of categorical and continuous regres-
sors all of which are of interest for explanatory
interpretation. Often ANCOVA is considered
amodified ANOVA that uses information from
an additional or uncontrolled variable that is
linearly related to the response variable. Such
a model containing a covariate may be ex-
pected to reduce residual variation and fit the
observed values better than the original ANO-
VA (11). In such cases, a “typical” ANCOVA

can be employed to compare treatment means
while correcting for the covariate. Another use
of ANCOVA is as a technique to compare a
series of regression models (9). In addition to
the assumptions underlying ANOVA (the error
terms are independent, normally distributed
and have constant variances); ANCOVA also
requires that the covariate is not affected by
the treatments, ranges of the covariate for
each level of the treatment factors are similar,
the response variable is linearly related to
the covariate, and the regression lines of the
response variable on the covariate are paral-
lel (homogeneous slopes) for all levels of the
qualitative factor(s).

In tree fruit research, ANCOVA has been
used to evaluate the effect of qualitative treat-
ments on fruit size. An example is a linear
model that includes rootstock as the qualitative
factor and crop density (CD; fruit-cm? trunk
cross-sectional area) as a covariate. Average
fruit weight (FW; g-fruit™) is the response vari-
able. Previous reports show that FW is linearly
related to CD (12) and ANCOVA has been
used to compare rootstock means at the aver-
age value of CD (2, 8). More recently, Marini
et al. (6, 7) found that the assumptions for a
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typical ANCOVA were not satisfied because
the ranges of CD were not always similar for
all rootstocks and the slopes were often not
homogenous.

Many statistics text books describe the typi-
cal ANCOVA as an error reduction technique
to compare treatment means while correcting
for a covariate, but there are several approaches
to analyzing data sets with a qualitative variable
plus a covariate, depending on which factors
in the model are significant. The purpose of
this paper is to demonstrate how one may
determine which approach is most appropriate
and then demonstrate a strategy for analyzing
experiments when a typical ANCOVA is not
appropriate. For illustration purposes, unpub-
lished data from an experiment comparing three
peach (Prunus persica L. Batsch) genotypes
were used to evaluate the effect of genotype
on FW while correcting for CD.

Materials and Methods

Data for this study were obtained from an
experiment initiated in 1999 at the Virginia
Tech College of Agriculture and Life Sci-
ences Kentland Research Farm to compare
three peach genotypes (Standard, Pillar and
Upright). Trees were trained to the open-vase
form. The experiment was a randomized com-
plete block design (RCBD) with five blocks.
The experimental unit was a 10-tree-plot for
each genotype, which was randomly assigned
to each block. Some trees died during the first
season, so there are unequal numbers of ob-
servations per plot. During harvest in 2002,
the number of fruit and the weight of the fruit
were recorded for each tree and FW and CD
were estimated for each tree. ANCOVA was
used to analyze the effect of genotype on FW
while correcting for CD. The use of subsam-
ples (10-tree-plots) added some complexity
to this experiment. To simplify the analysis
Hinkelmann and Kempthorne (4) suggest
using the mean of the subsamples as the data
for the ANCOVA. We chose not to use plot
means because there were different numbers
of observations per plot and plot means would
provide only five observations for estimating

regression lines. Before using means of sub-
samples, it is instructive to graphical explore
the relationship between the response variable
and the covariate using subsample means as
well as with individual observations.

Like multiple-regression, ANCOVA is not a
single-step analysis; the appropriate form of the
covariate part of the model must be identified.
This paper utilizes the strategy suggested by
Littell et al. (5) and Milliken and Johnson (9)
for determining the form of the linear model
and the subsequent analysis. The experiment
involved one qualitative factor (genotype) and
one continuous variable (CD) in a RCBD with
subsampling to determine if average FW was
influenced by genotype, taking into account
that FW is linearly related to CD. The data set,
along with the SAS code associated with the
data step, are presented in Table 1.

The strategy for identifying the form of
the model and the resulting analyses begins
by determining whether a straight line is an
adequate model to describe the data for each
level of the qualitative factor (genotype) and
this can be done with linear regression. Before
determining the covariance part of the model,
homogeneity of variances should be tested
to determine if an unequal variance model is
required. Proc GLM was used to perform a
Levene’s test of equality of variances. Few
statistics texts offer rules of thumb, based
on a-levels, for data analysts to use when
testing the assumptions underlying statistical
techniques. Anderson and McLean (1) sug-
gested considering remedial action when the
homogeneity test has a P-value between 0.01
and 0.001. Since the P-value resulting from
the Levene’s test was 0.011, we assumed that
an equal variance model was adequate for a
valid ANCOVA. The strategy used to identify
the covariance part of the model is explained
in detail below. The slopes were not homo-
geneous, so a typical ANCOVA was not used
and instead an unequal slopes model was fitted
and slopes were compared using pair-wise
comparisons. Finally treatment’s least squared
means (LSmeans) were compared at several
values of the covariate.
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Table 1. The SAS data step and data set for an experiment to evaluate the relationship between fruit weight (FW)
and crop density (CD) as affected by three peach genotypes (type). The data set has five blocks, three genotypes
(type), 10 trees per genotype nested in block and genotype, FW and CD.

option pagesize=80 linesize=80;
data peach type;
input block tree type $ fw cd;

cards;

11 p 164 7.43 2 10 s 150 5.82 4 7 p 170 2.74
I2 pPiE702.67 2 4dp 190 2,72 4 8 p 150 5.27
1 4 p 180 1.95 2 2 p 190 0.97 4 9 p 190 2.91
15 p 170 1.57 2 3 p le0 2.58 4 10 p 180 4.15
16 p 180 0.22 2 4 p 180 0.84 4 1 s 163 4.02
1.7 p 170 L«25 2 5 p 180 1.867 4 2 s 167 5.22
18 p 170 1.29 2 6 p 180 2.82 4 3 s 160 4.18
1 10 p 200 0.64 2 9 170 1,07 4 4 s 150 4.34
11 wu 190 3.82 2 8 p 180 2.28 4 6 s 160 5.97
12 w200 3.19 2 9 p 160 4.17 4 7 s 160 4.87
13 u 210 3.18 2 10 p 160 3.69 4 8 s 160 5.24
14 ul73 5.31 3 1u 210 2.52 4 9 s 160 6.14
1. 5 200 223 3 2 u 180 4.46 4 10 s 160 6.39
17 w180 3.35 F J3qE 190 2.71 4 1 u 190 3.40
18 u 190 3.45 3 4 u 190 2.99 4 2 u 180 4.44
19 ul60 6.03 3 5w 210 311 4 3 u 190 4.88
1 10 u 140 3.45 3 6 u 200 4.20 4 4 u 180 3.18
1: & =8 1500 579 3 7 u 200 3.43 4 5 u 190 3.69
12 g 150 1.49 3 8 u 200 4.63 5 1 s 160 4.82
13 s 140 6.08 F w220 3,32 5 2 s 160 3.28
1. 4 8 160 3.95 3 10 u 220 1.86 5 3 s 150 6.04
15 8 150 5.8B7 3 1p 170 2.48 5 4 s 160 4.91
16 s 160 5,01 3 2 p 170 2.96 5 58 170 2.71
17 s 150 5.08 3 3 p 180 2.13 5 6 s 160 2.82
18 s 160 3.48 3 4 p 200 1.54 & 7 8 170 3.92
19 8 150 6.01 3 5 p 180 2.33 5 8 s 170 4.30
1 10 8 170 3.46 3 6 p 180 1.85 5 9 8 160 2.99
21 u 180 4.46 3 7 p 1le0 4.00 5 10 '8 170 2.89585
2 2 =170 4,53 3 8 p 210 0.79 5 I, 37 322
203w 200 2u5L 3 9 p 200 2.50 5 2u 210 3.56
2 4 u 163 6.48 3 10 p 180 1.09 5 3 u 187 3.89
25 u 190 3.40 3 41 & 150 5.30 5 4 u 200 4.16
28 u 18y 333 3 28 170 4.31 5 5 u 180 4.89
2 7 u 220 2.56 3 3 8 170 3.42 5 6 u 180 4.46
28 u 160 3.30 3 4 8 173 6.28 5 ‘7w 190 2.36
2 9 u 210 4.32 3 5 s 160 4.97 5 10 u 200 3.76
2 10 u 180 4.28 3 6 s 170 3.60 5 1 p 180 1.68
21 s 160 5.22 3 7 s 160 4.15 5 2 p 180 2.09
22 s 160 4.71 3 8 s 150 6.92 5 3 p 160 162
23 s 170 4.82 3 10 8 140 5.72 5 4 p 190 2.59
2 4 s 170 3.82 4 1 p 200 1.00 5 5 p 160 1.40
2 5 s 160 3.62 4 2 p 180 0.47 5 6 p 150 6.65
2 6 s 160 4.33 4 4 p 160 0.46 5 7:p 170 291
2 7 8 140 5.91 4 5 p 200 1.36 5 8 p 180 3.52
2 8 s 140 5.25 4 6 p 210 1.05 5 9 p 200 1.24
29 8 150 4.15
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Results and Discussion

The data, along with the SAS code for
the data step are presented in Table 1. The
first step is to determine if the data for all
genotypes can be described with lines. A plot
of the data, generated with the GPLOT pro-
cedure suggests that a linear fit is reasonable
(Fig. 1). To verify this, SAS’s REG procedure
was used to fit linear and quadratic models to
the data. This is not really an ideal analysis
because the experiment was a RCBD and
the REG procedure doesn’t allow inclusion
of the random effects (block and the block x
genotype for experimental error) in the model.
Although the REG procedure generates incor-
rect standard errors, the parameter estimates
are correct and can be used to determine the
nature of the linear relationship between the
response variable and the covariate. Results
from the REG procedure indicated that the
linear term, but not the quadratic term, was
significant for all three genotypes (abbreviated
as TYPE) indicating that straight lines fit the
data adequately for ANCOVA.

To verify that the ranges of the covari-
ate were similar for all three genotypes, the
MEANS procedure was used to obtain the
minimum, mean and maximum values of FW

240

220 ~ o o o

Fruit Weight (g)

0 1 2 3 4 5

interpolation=rl option in the symbol statement.

6 7 8
Crop Density (Fruit/cm2 TCA)

Fig. 1. Relationship between fruit weight and crop density for three peach
genotypes. The figure was generated with SAS’s GPLOT procedure. A
scatterplot with regression lines for each genotype was requested with the

and CD for the three genotypes (Table 2).
Based upon our graphical analyses and since
the range of CD for the Pillar trees encom-
passed the range of the other tree types, we
feel that the ranges of the covariate overlap
adequately for a valid ANCOVA.

Step 1: Test the hypothesis that the slopes
are equal to zero. The SAS statements, along
with the resulting output, are presented in Ta-
ble 3. The model statement contains the terms
TYPE and CD*TYPE plus the option for “no
intercept” (NOINT). The term TYPE with the
NOINT options produces estimates of the in-
tercepts for each genotype if the SOLUTION
option is included in the model statement. If
the NOINT option is omitted, as in Step 2, the
intercept estimates are obtained by setting the
last genotype (Upright) to zero because when
sorted alphabetically Upright is listed last. The
estimates corresponding to the intercepts can
still be calculated for each genotype, but they
must be obtained by subtracting the estimates
for Pillar and Standard types from the estimate
for Upright. The term CD*TYPE generates
the part of the design matrix corresponding
to the slopes. By not including the CD term,
the covariate part of the model is nonsingular
and slopes are estimated for each genotype.
If CD was included in the
model statement, the slope
for Upright would be set to
zero and slopes for Pillar
and Standard types could
be obtained by subtraction.

The use of linear mixed
models (via SAS’s MIXED
procedure) for data sets
containing random effects or
repeated measures requires
specification of appropriate
denominator degrees-of-
freedom for test statistics
for fixed effects (genotype).
This becomes complicated
even in the case of balanced
designs with simple covari-
ance structures and becomes
increasingly difficult for
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Table 2. SAS code for proc means, along with resulting output for minimum, mean and maximum values for CD
and FW for the three genotypes (TYPE).

proc means maxdec=2 min mean max;
class type;
var cd fw;
run;

The Means Procedure

type NObs  Variable Minimum  Mean Maximum

P 46 cd 0.22 227 7.43
fw 150.00 177.70 210.00
S 48 cd 1.49 4.66 6.92
fw 140.00 158.60 173.00
U 42 cd 1.86 3.72 6.48

fw 140.00 191.31 222.00

Table 3. SAS statements and output for fitting a model to test the hypothesis that all slopes are equal to zero (step
1). The first section of output for Type 3 Tests of Fixed Effects contains the numerator and denominator degrees
of freedom associated with the F-tests. The lower section is the Solution for Fixed Effects. For the effect labeled
“type” the Estimate is the value for the intercept, and for the effect labeled “cd*type” the Estimate is the value for
the slope. Standard errors of the estimates, degrees of freedom, t-value and probability of a greater t are for testing
the hypotheses that the estimates are equal to zero.

proc mixed;
class block type tree;
model fw = type cd*type/noint solution ddfm=kr;
random block block*type;

run;

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F
type 3 77.8 1245.25 <.0001
cd*type 3 128 16.00 <.0001

Solution for Fixed Effects
Effect type Estimate Standard Error DF tValue Pr>|t|

type p 189.21 3.5732 435 5295 <.0001
type s 17439  7.5318 121 23.15 <.0001
type u 22678 76036 124 29.83 <.0001
cd*type  p -5.1090 1.1808 126  -4.33 <0001
cd*type s -3.3676 1.5354 129  -2.19 0.0301

cd*type  u 95107  1.9353 127  -491 <0001
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Table 4. SAS statements and output for fitting a model to test the hypothesis that all slopes are equal (step 2). The
Type 3 Tests of Fixed Effects contains the numerator and denominator degrees of freedom associated with the F-

tests.

proc mixed;

class block type tree;

model fw = type cd cd*type / ddfm=kr;
random block block*type;

run;

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F

type
ed

cd*type

2 128 14.14 <.0001
1 127 43.63 <.0001
2 128 3.15  0.0461

complex designs involving complicated co-
variance structures, unbalanced data or small
sample sizes. The MIXED procedure offers
several denominator degrees-of-freedom
options and the “containment method” is the
default when another method is not requested
in the model statement. The Kenward-Roger
method for estimating denominator degrees-
of-freedom for fixed effects was requested
with the option “ddfm=kr”. The Kenward-
Roger approximation (3) reportedly performs
well with more complicated covariance struc-
tures when sample sizes are moderate to small
and the design is reasonably balanced (10).
Blocks, plots (combinations of blocks
and genotypes) and trees (tree-to-tree is the
residual variance) were random effects, and
block and block x type were included in the
Random statement. Unlike the GLM proce-
dure, the MIXED procedure does not generate
an ANOVA table with sums of squares because
the GLM and MIXED procedures use different
estimation methods. The GLM procedure uses
the ordinary least squares estimation, whereas
the MIXED procedure uses maximum likeli-
hood. The Type 3 F-statistic corresponding to
genotype in the Type 3 tests of fixed effects is
for the hypothesis that all genotypes are equal.
This is equivalent to comparing the regression
models at CD=0, which is not of interest and
cannot be easily interpreted because there is no
FW at CD=0. The F-statistic corresponding to

CD*TYPE in the Type 3 tests of fixed effects
is for the hypothesis that all slopes are equal
to zero. The P-value of <0.0001 indicates that
the slopes are not all equal to zero, so for these
data a typical ANOVA is not appropriate for
comparing genotypes.

Step 2: Determine if a common slopes
model is adequate to describe the data. Now
that we know that the slopes are not all equal
to zero, we want to know if the slopes are all
parallel to each other. The SAS statements plus
the resulting output are presented in Table 4.
The model statement includes type (fixed ef-
fect), CD (the covariate) and CD*TYPE (the
interaction), and the model becomes singular
because the NOINT option is not included.
The Type 3 F-statistic for the CD*TYPE effect
tests the hypothesis that all slopes are equal.
The P-value of 0.0461 indicates that there is
adequate evidence to reject the hypothesis that
slopes are equal, so an equal slopes model (a
typical ANCOVA) will not be adequate for
these data. The next step is to compare geno-
types by comparing the regression lines or
characteristics of the regression lines.

Step 3: Fit an unequal slopes model. The
SAS statements plus the output are presented
in Table 5. The model statement is the same
as in step 1, but the SOLUTION option is
included in the model statement to generate
estimates of intercepts and slopes for each
genotype. Three LSmeans statements were
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Table 5. SAS statements for fitting an unequal slopes model to obtain estimates for intercepts and slopes for each
genotype (step 3). LSmeans statements are used to obtain estimates of fruit weight (FW) and to compare genotypes
at three levels of crop density (CD). Estimate statements are used to perform pair-wise comparisons on the slopes.
The first section of output for Type 3 Tests of Fixed Effects contains the numerator and denominator degrees of
freedom associated with the F-tests. The middle section is the Solution for Fixed Effects. For the effect labeled
“type” the Estimate is the value for the intercept, and for the effect labeled “cd*type” the Estimate is the value for the
slope. Standard errors of the estimates, degrees of freedom, t-value and probability of a greater t are for testing the
hypotheses that the estimates are equal to zero. The third section of output, Least Squares Means, is FW estimated
at three levels of CD, along with associated t-tests to test the hypothesis that the estimate mean is equal to zero. The
forth section of the output contains all possible pair-wise comparisons of the LSmeans for tree type, along with the
difference between the LSmeans and the t-value used to test the hypothesis that the differences are equal to zero.

proc mixed;
class block type;
model fw = type cd*type / noint solution ddfm=kr;
random block block*type;
lsmeans type / at cd=1 diff;
lsmeans type / at cd=3 diff;
lsmeans type / at cd=5 diff;

e P s U;
estimate 'P vs. §' cd*type 1 =L 0;
estimate 'P vs. U' cd*type f: 0 -1;
estimate 'S vs. U' cd*type 0 T =l

run;
Type 3 Tests of Fixed Effects *
'Effect Num DF Den DF F Value Pr>F
type 3 125 1364.83 <.0001
cd*type 3 128 16.85 <.0001
Solution for Fixed Effects
Effect type Estimate Standard Error DF t Value Pr > |t|
type p 189.80 3.4597 118 54.86 <.0001
type s 175.30 7.4862 130 23.42 <.0001
type u 226.26 7.4367 130 30.43 <.0001
cd*type p -5.3874 1.1782 128  -4.57 <.0001
cd*type s -3.5499 1.5450 130  -2.30 0.0232
cd*type u -9.3227 1.8978 127 -4.91 <.0001
Estimates
Label Estimate Standard Error DF t Value Pr>|t|
Pvs.S -1.8375 1.9449 129  -0.94 0.3465
Pvs. U 3.9353 2.2318 127 1.76 0.0803

Sve. U 57728 2.4608 129  2.35 0.0205
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Estimates

Label Estimate Standard Error DF t Value Pr>|t|
Pvs.S -1.8375 1.9449 129  -0.94 0.3465
Pvs. U 3.9353 2.2318 127 1.76 0.0803
Svs.U 57728 24608 129  2.35 0.0205
Leaét Squares Means
Effect type c¢d tree Estimate Standard Error DF t Value Pr> [t|
type p 1.00 532 184.41 2.6793 87 68.83 <.0001
type s 1.00 532 171.75 6.0288 129 28.49 <0001
type u 1.00 5.32 21694 5.6589 130 38.34 <.0001
type p 3.00 532 173.64 24343 61.1 71.33 <.0001
type s 3.00 532 164.65 3.3577 111  49.04 <.0001
type u  3.00 532 198.30 2.6588 89.7 74.58 <.0001
type p 5.00 532 162.86 39721 116 41.00 <.0001
type s 5.00 5.32 157.55 2.3020 53.3 68.44 <.0001
type u 500 532 179.65 3.3056 118 54.35 <.0001
Differences of Least Squares Means
Effect type type cod tree Estimate Standard Error DF t Value Pr> |t|
type p s 1.00 532 12.6571 6.3640 130 1.99 0.0488
type p u 1.00 5.32 -32.5301 5.9261 127 -5.49 <.0001
type s u 1.00 532 -45.1872 8.0909 129  -5.58 <.0001
type p s 3.00 532 89821 3.6570 129 2.46 0.0154
type p u 3.00 532 -24.6595 3.0149 128 -8.18 <.0001
type s u 3.00 5.32 -33.6416 3.8392 129 -8.76 <.0001
type p s 5.00 532 53072 4.0628 127 1.31 0.1938
type p u 5.00 532 -16.7889 47863 128 -3.51 0.0006
type s u 5.00 5.32 -22.0960 3.5301 127 -6.26 <.0001

“The P-value of <0.0001 for the cd*type interaction in the Type 3 tests for Fixed Effects indicates that the slopes are not all equal to

zero, so a comparison of slopes is more informative that performing a typical ANCOVA.

included to perform pair-wise comparisons
of predicted FW estimated at three levels
of CD (1, 3, and 5 fruit-cm? TCA). Three
estimate statements were also included to

perform pair-wise comparisons on the three

slopes.

The F-statistics in the “type 3 tests of fixed
effects” table test the hypotheses that all in-
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tercepts are equal to zero (type) and that all
slopes are equal to zero (CD*TYPE). The P-
value indicates that the CD*TYPE interaction
is significant (P <0.0001), so slopes are not all
equal. The “Solution for Fixed Effects” table
provides estimates for intercepts and slopes
for each model. For example, for Pillar trees
the intercept is 189.8 and the slope is -5.3874.
The P-value in the far right column is for the
hypothesis that the coefficient is equal to zero.
The “Estimates” table shows the difference
(Estimate) between each pair of slopes and the
t-statistic tests the hypothesis that the differ-
ence is equal to zero. The difference between
slopes for Pillar vs. Standard is -5.3874 —
(-3.5499) =-1.8375, and the standard error of
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the difference is 1.9449. The associated t-value
is -0.94 and the P-value is 0.3465, indicating
that the slopes for Pillar and Standard types are
not different at the 5% level of significance.
Slopes for Pillar and Upright are not differ-
ent (P <0.0803), and slopes for Standard and
Upright are different (P < 0.0205).

The “Least Squares Means” table provides
estimates of FW at three levels of CD (1, 3, and
5 fruit-cm? TCA) for the three genotypes, along
with the standard errors of the estimate. The t-
statistic is for the hypothesis that the estimate
is equal to zero. For example, the LSmeans for
FW for Pillar trees with CD=1.0, 3.0 and 5.0 are
184.41 g, 173.64 g and 162.86 g, respectively.
The “Differences of Least Squares Means”

Table 6. SAS statements for fitting a “typical” ANCOVA, along with the resulting output, where all slopes are as-
sumed to be equal, so the LSmeans are corrected for the mean value of the covariate, CD. The bottom section labeled
Differences of Least Squares Means performs all pairwise comparisons of the means with the DIFF test.

proc mixed;
class block type ;

model fw= type cd / ddfm=kr;

random block block*type;
lsmeans type/adjust=diff;
run;

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F
type 2 129  61.97 <.0001
cd 1 129  40.45 <.0001

Least Squares Means

Effect type Estimate Standard Error DF t Value Pr>|t|
type p 170.62 2.6993 134 63.21 <.0001
type s 164.65 2.6122 11.8 63.03 <.0001
type u 192.27 2.5428 105 75.61 <.0001

Differences of Least Squares Means

Effect type _type Estimate Standard Error DF t Value Pr>|t|

type p s 5.9666 32271 128 1.85 0.0668
type p wu 21,6517 2.8824 129  -7.51 <0001
type s u -27.6183 2.6957 128 -10.25 <.0001
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table provides all possible pair-wise com-
parisons for the genotypes at three levels of
CD (1.0, 3.0 and 5.0) and the t-statistic is for
the hypothesis that the difference is equal to
zero. As an example, at CD=1.0, the difference
between Pillar and Standard is 184.41-171.75
= 12.6571, and these means are different at
the 0.0488 level of significance. It is apparent
that the estimated differences between geno-
type become more similar as CD increases
and at CD=5.0 the difference between Pillar
and Standard (162.86-157.55=5.3072) is not
significant (P = 0.1938). This is verified by
noticing the convergence of the three lines at
CD values greater than 7 in Fig. 1.

For comparative purposes a “typical”
ANCOVA was performed and the means for
the three tree types were compared with the
DIFF option. The output in Table 6 indicates
that both tree type and the covariate CD are
significant (P<0.0001). The second section of
the table contains the LSmeans for the three
tree types corrected for the mean value of CD
(3.55 g). The bottom section of Table 6 shows
results for the pair-wise comparisons. The
values for the Estimates are the differences of
the means. The interpretation of this analysis
is that FW for Upright trees was greater than
for the other two types and FW for Standard
and Pillar trees were not different. This
typical ANCOVA would lead the researcher
to conclude that Upright trees produce larger
fruit than the other types, but the appropriate
analysis shows that at higher CDs the effect
of tree type diminishes.

The analysis presented in this paper pro-
vides an introduction to ANCOVA used to
compare a series of regression lines, but the
experiment was more complicated than many
experiments involving tree fruit because there
was subsampling. Since the slopes for the
Standard and Pillar trees are not different, an-
other estimate statement could be constructed
to compare slopes and LSmeans for Upright
trees vs. the average of Standard and Pillar
trees. Although the analysis will become more
complicated, this analysis can also be extended
to split-plot designs, to experiments with more
than one qualitative variable or more than one
covariate, and to factorial treatment structures.
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Before analyzing data from more complicated
experiments, graphical techniques should be
used to identify potential interactions and
violation of the underlying assumptions.
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