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Abstract
  Horticulturists often perform experiments involving both qualitative and quantitative factors. Sometimes the 
quantitative factor is a continuous variable (covariate) measured on each experimental unit and data can be analyzed 
by analysis of covariance (ANCOVA). ANCOVA is a powerful and flexible technique for extracting maximum 
information from a data set. Data from an experiment designed to compare the productivity of three peach (Prunus 
persica L. Batsch) genotypes were used to determine if genotype influenced average fruit weight, while account-
ing for the variation explained by the linear relationship between fruit weight and crop density. The data set was 
analyzed with SAS’s MIXED procedure to demonstrate a strategy for analyzing experiments with a qualitative 
variable plus a covariate.   	

  Agricultural researchers employ statistical 
techniques to help interpret experimental data. 
Analysis of variance (ANOVA) is commonly 
used to test the hypothesis that qualitative 
treatments have an equal effect on a response 
variable. Regression analysis is used to evalu-
ate the relationship between a response vari-
able and quantitative or continuous variables, 
sometimes known as regressor variables or co-
variates.  Analysis of covariance (ANCOVA) 
is a special case of regression that combines 
features of ANOVA and regression and the 
linear model contains both qualitative and 
one or more continuous variables measured 
on each experimental unit. ANCOVA can be 
used in two ways: 1.) as an error-reduction 
technique, or 2.) multiple regression with a 
mixture of categorical and continuous regres-
sors all of which are of interest for explanatory 
interpretation.   Often ANCOVA is considered 
a modified ANOVA that uses information from 
an additional or uncontrolled variable that is 
linearly related to the response variable. Such 
a model containing a covariate may be ex-
pected to reduce residual variation and fit the 
observed values better than the original ANO-
VA (11). In such cases, a “typical” ANCOVA 

can be employed to compare treatment means 
while correcting for the covariate.  Another use 
of ANCOVA is as a technique to compare a 
series of regression models (9).  In addition to 
the assumptions underlying ANOVA (the error 
terms are independent, normally distributed 
and have constant variances); ANCOVA also 
requires that the covariate is not affected by 
the treatments, ranges of the covariate for 
each level of the treatment factors are similar, 
the response variable is linearly related to 
the covariate, and the regression lines of the 
response variable on the covariate are paral-
lel (homogeneous slopes) for all levels of the 
qualitative factor(s). 
  In tree fruit research, ANCOVA has been 
used to evaluate the effect of qualitative treat-
ments on fruit size. An example is a linear 
model that includes rootstock as the qualitative 
factor and crop density (CD; fruit·cm-2 trunk 
cross-sectional area) as a covariate. Average 
fruit weight (FW; g·fruit-1) is the response vari-
able. Previous reports show that FW is linearly 
related to CD (12) and ANCOVA has been 
used to compare rootstock means at the aver-
age value of CD (2, 8). More recently, Marini 
et al. (6, 7) found that the assumptions for a 
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typical ANCOVA were not satisfied because 
the ranges of CD were not always similar for 
all rootstocks and the slopes were often not 
homogenous.
  Many statistics text books describe the typi-
cal ANCOVA as an error reduction technique 
to compare treatment means while correcting 
for a covariate, but there are several approaches 
to analyzing data sets with a qualitative variable 
plus a covariate, depending on which factors 
in the model are significant.  The purpose of 
this paper is to demonstrate how one may 
determine which approach is most appropriate 
and then demonstrate a strategy for analyzing 
experiments when a typical ANCOVA is not 
appropriate. For illustration purposes, unpub-
lished data from an experiment comparing three 
peach (Prunus persica L. Batsch) genotypes 
were used to evaluate the effect of genotype 
on FW while correcting for CD.

Materials and Methods
  Data for this study were obtained from an 
experiment initiated in 1999 at the Virginia 
Tech College of Agriculture and Life Sci-
ences Kentland Research Farm to compare 
three peach genotypes (Standard, Pillar and 
Upright). Trees were trained to the open-vase 
form. The experiment was a randomized com-
plete block design (RCBD) with five blocks. 
The experimental unit was a 10-tree-plot for 
each genotype, which was randomly assigned 
to each block. Some trees died during the first 
season, so there are unequal numbers of ob-
servations per plot.  During harvest in 2002, 
the number of fruit and the weight of the fruit 
were recorded for each tree and FW and CD 
were estimated for each tree. ANCOVA was 
used to analyze the effect of genotype on FW 
while correcting for CD. The use of subsam-
ples (10-tree-plots) added some complexity 
to this experiment. To simplify the analysis 
Hinkelmann and Kempthorne (4) suggest 
using the mean of the subsamples as the data 
for the ANCOVA. We chose not to use plot 
means because there were different numbers 
of observations per plot and plot means would 
provide only five observations for estimating 

regression lines. Before using means of sub-
samples, it is instructive to graphical explore 
the relationship between the response variable 
and the covariate using subsample means as 
well as with individual observations.
  Like multiple-regression, ANCOVA is not a 
single-step analysis; the appropriate form of the 
covariate part of the model must be identified. 
This paper utilizes the strategy suggested by 
Littell et al. (5) and Milliken and Johnson (9) 
for determining the form of the linear model 
and the subsequent analysis. The experiment 
involved one qualitative factor (genotype) and 
one continuous variable (CD) in a RCBD with 
subsampling to determine if average FW was 
influenced by genotype, taking into account 
that FW is linearly related to CD. The data set, 
along with the SAS code associated with the 
data step, are presented in Table 1.
  The strategy for identifying the form of 
the model and the resulting analyses begins 
by determining whether a straight line is an 
adequate model to describe the data for each 
level of the qualitative factor (genotype) and 
this can be done with linear regression. Before 
determining the covariance part of the model, 
homogeneity of variances should be tested 
to determine if an unequal variance model is 
required. Proc GLM was used to perform a 
Levene’s test of equality of variances. Few 
statistics texts offer rules of thumb, based 
on α-levels, for data analysts to use when 
testing the assumptions underlying statistical 
techniques. Anderson and McLean (1) sug-
gested considering remedial action when the 
homogeneity test has a P-value between 0.01 
and 0.001. Since the P-value resulting from 
the Levene’s test was 0.011, we assumed that 
an equal variance model was adequate for a 
valid ANCOVA. The strategy used to identify 
the covariance part of the model is explained 
in detail below. The slopes were not homo-
geneous, so a typical ANCOVA was not used 
and instead an unequal slopes model was fitted 
and slopes were compared using pair-wise 
comparisons. Finally treatment’s least squared 
means (LSmeans) were compared at several 
values of the covariate.  
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Table 1. The SAS data step and data set for an experiment to evaluate the relationship between fruit weight (FW) 
and crop density (CD) as affected by three peach genotypes (type). The data set has five blocks, three genotypes 
(type), 10 trees per genotype nested in block and genotype, FW and CD.
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Results and Discussion
  The data, along with the SAS code for 
the data step are presented in Table 1. The 
first step is to determine if the data for all 
genotypes can be described with lines. A plot 
of the data, generated with the GPLOT pro-
cedure suggests that a linear fit is reasonable 
(Fig. 1). To verify this, SAS’s REG procedure 
was used to fit linear and quadratic models to 
the data. This is not really an ideal analysis 
because the experiment was a RCBD and 
the REG procedure doesn’t allow inclusion 
of the random effects (block and the block x 
genotype for experimental error) in the model. 
Although the REG procedure generates incor-
rect standard errors, the parameter estimates 
are correct and can be used to determine the 
nature of the linear relationship between the 
response variable and the covariate.  Results 
from the REG procedure indicated that the 
linear term, but not the quadratic term, was 
significant for all three genotypes (abbreviated 
as TYPE) indicating that straight lines fit the 
data adequately for ANCOVA. 
  To verify that the ranges of the covari-
ate were similar for all three genotypes, the 
MEANS procedure was used to obtain the 
minimum, mean and maximum values of FW 

and CD for the three genotypes (Table 2). 
Based upon our graphical analyses and since 
the range of CD for the Pillar trees encom-
passed the range of the other tree types, we 
feel that the ranges of the covariate overlap 
adequately for a valid ANCOVA.
  Step 1: Test the hypothesis that the slopes 
are equal to zero. The SAS statements, along 
with the resulting output, are presented in Ta-
ble 3. The model statement contains the terms 
TYPE and CD*TYPE plus the option for “no 
intercept” (NOINT). The term TYPE with the 
NOINT options produces estimates of the in-
tercepts for each genotype if the SOLUTION 
option is included in the model statement.  If 
the NOINT option is omitted, as in Step 2, the 
intercept estimates are obtained by setting the 
last genotype (Upright) to zero because when 
sorted alphabetically Upright is listed last. The 
estimates corresponding to the intercepts can 
still be calculated for each genotype, but they 
must be obtained by subtracting the estimates 
for Pillar and Standard types from the estimate 
for Upright. The term CD*TYPE generates 
the part of the design matrix corresponding 
to the slopes.  By not including the CD term, 
the covariate part of the model is nonsingular 
and slopes are estimated for each genotype. 

Fig. 1. Relationship between fruit weight and crop density for three peach 
genotypes. The figure was generated with SAS’s GPLOT procedure. A 
scatterplot with regression lines for each genotype was requested with the 
interpolation=rl option in the symbol statement.

If CD was included in the 
model statement, the slope 
for Upright would be set to 
zero and slopes for Pillar 
and Standard types could 
be obtained by subtraction.
  The use of linear mixed 
models (via SAS’s MIXED 
procedure) for data sets 
containing random effects or 
repeated measures requires 
specification of appropriate 
denominator degrees-of-
freedom for test statistics 
for fixed effects (genotype). 
This becomes complicated 
even in the case of balanced 
designs with simple covari-
ance structures and becomes 
increasingly difficult for 
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Table 2. SAS code for proc means, along with resulting output  for minimum, mean and maximum values for CD 
and FW for the three genotypes (TYPE).

Table 3. SAS statements and output for fitting a model to test the hypothesis that all slopes are equal to zero (step 
1). The first section of output for Type 3 Tests of Fixed Effects contains the numerator and denominator degrees 
of freedom associated with the F-tests. The lower section is the Solution for Fixed Effects. For the effect labeled 
“type” the Estimate is the value for the intercept, and for the effect labeled “cd*type” the Estimate is the value for 
the slope. Standard errors of the estimates, degrees of freedom, t-value and probability of a greater t are for testing 
the hypotheses that the estimates are equal to zero. 
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complex designs involving complicated co-
variance structures, unbalanced data or small 
sample sizes. The MIXED procedure offers 
several denominator degrees-of-freedom 
options and the “containment method” is the 
default when another method is not requested 
in the model statement. The Kenward-Roger 
method for estimating denominator degrees-
of-freedom for fixed effects was requested 
with the option “ddfm=kr”. The Kenward-
Roger approximation (3) reportedly performs 
well with more complicated covariance struc-
tures when sample sizes are moderate to small 
and the design is reasonably balanced (10). 
  Blocks, plots (combinations of blocks 
and genotypes) and trees (tree-to-tree is the 
residual variance) were random effects, and 
block and block x type were included in the 
Random statement. Unlike the GLM proce-
dure, the MIXED procedure does not generate 
an ANOVA table with sums of squares because 
the GLM and MIXED procedures use different 
estimation methods. The GLM procedure uses 
the ordinary least squares estimation, whereas 
the MIXED procedure uses maximum likeli-
hood. The Type 3 F-statistic corresponding to 
genotype in the Type 3 tests of fixed effects is 
for the hypothesis that all genotypes are equal. 
This is equivalent to comparing the regression 
models at CD=0, which is not of interest and 
cannot be easily interpreted because there is no 
FW at CD=0. The F-statistic corresponding to 

CD*TYPE in the Type 3 tests of fixed effects 
is for the hypothesis that all slopes are equal 
to zero. The P-value of <0.0001 indicates that 
the slopes are not all equal to zero, so for these 
data a typical ANOVA is not appropriate for 
comparing genotypes.
  Step 2: Determine if a common slopes 
model is adequate to describe the data. Now 
that we know that the slopes are not all equal 
to zero, we want to know if the slopes are all 
parallel to each other. The SAS statements plus 
the resulting output are presented in Table 4. 
The model statement includes type (fixed ef-
fect), CD (the covariate) and CD*TYPE (the 
interaction), and the model becomes singular 
because the NOINT option is not included. 
The Type 3 F-statistic for the CD*TYPE effect 
tests the hypothesis that all slopes are equal. 
The P-value of 0.0461 indicates that there is 
adequate evidence to reject the hypothesis that 
slopes are equal, so an equal slopes model (a 
typical ANCOVA) will not be adequate for 
these data. The next step is to compare geno-
types by comparing the regression lines or 
characteristics of the regression lines.
  Step 3: Fit an unequal slopes model. The 
SAS statements plus the output are presented 
in Table 5. The model statement is the same 
as in step 1, but the SOLUTION option is 
included in the model statement to generate 
estimates of intercepts and slopes for each 
genotype. Three LSmeans statements were 

Table 4. SAS statements and output for fitting a model to test the hypothesis that all slopes are equal (step 2). The 
Type 3 Tests of Fixed Effects contains the numerator and denominator degrees of freedom associated with the F-
tests.
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Table 5. SAS statements for fitting an unequal slopes model to obtain estimates for intercepts and slopes for each 
genotype (step 3).  LSmeans statements are used to obtain estimates of fruit weight (FW) and to compare genotypes 
at three levels of crop density (CD). Estimate statements are used to perform pair-wise comparisons on the slopes. 
The first section of output for Type 3 Tests of Fixed Effects contains the numerator and denominator degrees of 
freedom associated with the F-tests. The middle section is the Solution for Fixed Effects. For the effect labeled 
“type” the Estimate is the value for the intercept, and for the effect labeled “cd*type” the Estimate is the value for the 
slope. Standard errors of the estimates, degrees of freedom, t-value and probability of a greater t are for testing the 
hypotheses that the estimates are equal to zero.  The third section of output, Least Squares Means, is FW estimated 
at three levels of CD, along with associated t-tests to test the hypothesis that the estimate mean is equal to zero. The 
forth section of the output contains all possible pair-wise comparisons of the LSmeans for tree type, along with the 
difference between the LSmeans and the t-value used to test the hypothesis that the differences are equal to zero. 
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included to perform pair-wise comparisons 
of predicted FW estimated at three levels 
of CD (1, 3, and 5 fruit•cm-2 TCA). Three 
estimate statements were also included to 

perform pair-wise comparisons on the three 
slopes.	
  The F-statistics in the “type 3 tests of fixed 
effects” table test the hypotheses that all in-

zThe P-value of <0.0001 for the cd*type interaction in the Type 3 tests for Fixed Effects indicates that the slopes are not all equal to 
zero, so a comparison of slopes is more informative that performing a typical ANCOVA.
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tercepts are equal to zero (type) and that all 
slopes are equal to zero (CD*TYPE). The P-
value indicates that the CD*TYPE interaction 
is significant (P <0.0001), so slopes are not all 
equal. The “Solution for Fixed Effects” table 
provides estimates for intercepts and slopes 
for each model. For example, for Pillar trees 
the intercept is 189.8 and the slope is -5.3874. 
The P-value in the far right column is for the 
hypothesis that the coefficient is equal to zero. 
The “Estimates” table shows the difference 
(Estimate) between each pair of slopes and the 
t-statistic tests the hypothesis that the differ-
ence is equal to zero. The difference between 
slopes for Pillar vs. Standard is -5.3874 – 
(-3.5499) = -1.8375, and the standard error of 

the difference is 1.9449. The associated t-value 
is -0.94 and the P-value is 0.3465, indicating 
that the slopes for Pillar and Standard types are 
not different at the 5% level of significance. 
Slopes for Pillar and Upright are not differ-
ent (P < 0.0803), and slopes for Standard and 
Upright are different (P < 0.0205).  
  The “Least Squares Means” table provides 
estimates of FW at three levels of CD (1, 3, and 
5 fruit•cm-2 TCA) for the three genotypes, along 
with the standard errors of the estimate. The t-
statistic is for the hypothesis that the estimate 
is equal to zero. For example, the LSmeans for 
FW for Pillar trees with CD=1.0, 3.0 and 5.0 are 
184.41 g, 173.64 g and 162.86 g, respectively. 
The “Differences of Least Squares Means” 

Table 6. SAS statements for fitting a “typical” ANCOVA, along with the resulting output, where all slopes are as-
sumed to be equal, so the LSmeans are corrected for the mean value of the covariate, CD. The bottom section labeled 
Differences of Least Squares Means performs all pairwise comparisons of the means with the DIFF test.

144538_APS_Apr12.indd   99 4/13/12   10:19 AM



100 Journal of the American Pomological Society

table provides all possible pair-wise com-
parisons for the genotypes at three levels of 
CD (1.0, 3.0 and 5.0) and the t-statistic is for 
the hypothesis that the difference is equal to 
zero. As an example, at CD=1.0, the difference 
between Pillar and Standard is 184.41-171.75 
= 12.6571, and these means are different at 
the 0.0488 level of significance. It is apparent 
that the estimated differences between geno-
type become more similar as CD increases 
and at CD=5.0 the difference between Pillar 
and Standard (162.86-157.55=5.3072) is not 
significant (P = 0.1938). This is verified by 
noticing the convergence of the three lines at 
CD values greater than 7 in Fig. 1.    
  For comparative purposes a “typical” 
ANCOVA was performed and the means for 
the three tree types were compared with the 
DIFF option. The output in Table 6 indicates 
that both tree type and the covariate CD are 
significant (P<0.0001). The second section of 
the table contains the LSmeans for the three 
tree types corrected for the mean value of CD 
(3.55 g). The bottom section of Table 6 shows 
results for the pair-wise comparisons. The 
values for the Estimates are the differences of 
the means. The interpretation of this analysis 
is that FW for Upright trees was greater than 
for the other two types and FW for Standard 
and Pillar trees were not different.  This 
typical ANCOVA would lead the researcher 
to conclude that Upright trees produce larger 
fruit than the other types, but the appropriate 
analysis shows that at higher CDs the effect 
of tree type diminishes.   
  The analysis presented in this paper pro-
vides an introduction to ANCOVA used to 
compare a series of regression lines, but the 
experiment was more complicated than many 
experiments involving tree fruit because there 
was subsampling. Since the slopes for the 
Standard and Pillar trees are not different, an-
other estimate statement could be constructed 
to compare slopes and LSmeans for Upright 
trees vs. the average of Standard and Pillar 
trees. Although the analysis will become more 
complicated, this analysis can also be extended 
to split-plot designs, to experiments with more 
than one qualitative variable or more than one 
covariate, and to factorial treatment structures. 

Before analyzing data from more complicated 
experiments, graphical techniques should be 
used to identify potential interactions and 
violation of the underlying assumptions.  
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