

March to early May and garners significantly higher FOB prices than other blueberry production regions marketing their fruit before or after Florida blueberries (USDA-Agricultural Marketing Service, 2014).

Low- to moderate-chill cultivars are grown in central and south central Florida (Williamson et al., 2013). ‘Emerald’ and ‘Jewell’ tend to be the most popular blueberry cultivars. However, some central Florida growers produce ‘Primadonna’ and ‘Springhigh’ blueberry fruit. New cultivars under evaluation by growers in central Florida are ‘Farthing’ and ‘Meadowlark’, while very low-chill cultivars including ‘Flicker’, ‘Kestrel’, and ‘Chickadee’ are being tested in south-central Florida.

Most Florida blueberry growers utilize several cultural practices to enhance their fruit production, including the incorporation of pine bark into the soil, application of hydrogen cyanamide, and the use of overhead irrigation for freeze protection (Williamson et al., 2013). Pine bark improves soil pH and organic matter content that are often less than optimum in most Florida blueberry sites. Hydrogen cyanamide application has been essential in attaining uniform leafing and early harvest of low-chill blueberry cultivars. Due to the potential for low temperature injury to plants during January and February in all Florida blueberry production regions, overhead irrigation is typically used for freeze protection.

Some of the major challenges facing Florida blueberry growers are the availability of farm labor, especially during harvest, and competition from other blueberry producing

regions throughout the world. Thus, selection of cultivars with an upright growth habit and uniform fruit ripening, along with the development of the most efficient harvesting equipment is necessary. Fortunately, worldwide demand for fresh blueberries continues to increase, potentially lessening the impact of competition from other production regions. New cultivars with high fruit quality characteristics that are adapted to Florida, use of plant growth regulators and novel technologies to mitigate low chill conditions, as well as utilization of chilling models to predict plant response will be important factors for profitable production in this region.

Literature Cited

AgroClimate. 2014. Chill hours calculator. Univ. Florida, Gainesville, FL. 29 July, 2014. <<http://agroclimate.org/>>.

Florida Automated Weather Network. 2014. Climate. Univ. Florida Ext. Serv. 29 July, 2014. <<http://fawn.ifas.ufl.edu/>>.

United States Department of Agriculture – Agricultural Marketing Service. 2014. Fruit and vegetable market news. 29 July, 2014. <<http://marketnews.usda.gov/portal/fv>>.

United States Department of Agriculture – National Agricultural Statistics Service. 2012. Census of agriculture. 29 July, 2014. <<http://www.agcensus.usda.gov/>>.

Williamson, J.G., J.W. Olmstead, and P.M. Lyrene. 2013. Florida’s commercial blueberry industry. Univ. Florida Ext. Serv. 29 July, 2014. <<http://edis.ifas.ufl.edu/ac031>>.

Williamson, J.G., J.W. Olmstead, G.K. England, and P.M. Lyrene. 2013. Southern highbush blueberry cultivars from the University of Florida. Univ. Florida Ext. Serv. 29 July, 2014. <<http://edis.ifas.ufl.edu/hs1245>>.

Correction

In volume 68(4), in the article by M.R. Warmund “Growth and cropping of ‘AU-Super’ or ‘Eaton’ chestnut trees with ‘Little Giant’ interstem on AU-Cropper seedling rootstock”, in Table 2 (page 194) the nut no./tree for Eaton in 2012 should have been 508 (rather than 08 as shown).