

Drought and Biostimulant Impacts on important Attributes of Perennial Ryegrass for Orchard and Vineyard Floor in the Intermountain West Region of the United States

SHAHLA MAHDAVI¹ AND ESMAEIL FALLAHI²

Additional index words: Abscisic acid, glycine betaine, digoxin, *Lolium perenne*

Abstract

Water shortage is a critical issue worldwide, mandating the use of efficient irrigation systems (i.e. drip and micro-jet) in modern orchards and vineyards to irrigate only the target trees and vines. Therefore, this issue may adversely impact orchard floor vegetation, which is needed to prevent tractor traffic compaction. Thus, the impact of two levels of evapotranspiration-based (ETc) water stresses and biostimulants consisting of abscisic acid (s-ABA), Glycine betaine (GB), digoxin, nano silica and some of their combined applications on perennial ryegrass (*Lolium perenne*, L.) under climatic and soil conditions of the Intermountain West, USA were studied. Comparing two levels of irrigation, grass clippings with 50% ETc had higher electrolyte leakage and proline but lower visual performance, chlorophyll index (CI) and chlorophyll b than those with 75% ETc. With the exception to the digoxin at 0.5 mg l⁻¹, clippings from all biostimulant-treated plots had significantly better visual performance and higher CI, proline, chlorophyll a and b and potassium (K) concentration than those from the un-treated control. These results underscore the value of these biostimulants for improving the orchard and vineyard floor grass covers under drought stress conditions that prevail in the western United States.

The population increase, meshed with the worldwide water shortages is becoming an increasingly critical issue that mandates minimum use of irrigation water with maximum efficiency and productivity in all agricultural crops. Under such conditions, priority for water use will be given to food crops and as a result landscape plants like turf will be subjected to additional water shortage. At the same time, orchard and vineyard floor cover grasses are needed to reduce soil erosion and compaction from tractors, while maintaining herbicide strips (Rowley et al., 2012).

To conserve water, it is necessary to adopt efficient irrigation systems such as drip and micro-jet in modern orchards (Fallahi et al., 2011), and these irrigation methods may adversely impact vegetation in row middles. Among the possible solutions for maintaining a bio-mulch in these alleyways is

the use of drought resistant grasses such as crested wheat grass (*Agropyron cristatum*) (Fallahi et al., 2015) and osmoprotectants or biostimulants (Farooq et al., 2009). Various supplemental chemicals, including plant biostimulants, enhanced survival and recovery of various plants after dehydration. Since the discovery of abscisic acid as a growth retardant by Addicott et al. (1964), a synthetic form was used to induce dormancy (Goggin et al., 2009), flower induction (Greene et al., 2011), fruit set in apples (Greene, 2012), and color enhancement in grapes (Peppi et al., 2006). Plant biostimulants such as abscisic acid play an important role in the regulation of plant tolerance to various environmental stresses, especially drought stress (Quarrie, 1989). Both natural (Lopez-Garbonell et al., 1994) and synthetic forms of plant biostimulants increase tolerance to abiotic stresses (Farooq

^{1,2} PhD graduate and Professor of Pomology, respectively, University of Idaho, Parma Research and Extension Center, 29603 U of I Lane, Parma, ID, USA

et al., 2009). Elevated ABA levels in xylem and root during dehydration can induce closure of stomata as a mechanism to conserve water (Wilkinson and Davis, 2002), inhibit leaf growth or transpiration (Alves and Setter, 2000) and adjust osmotic enhancement (Zhaolong, 2002). Tworkoski et al. (2011) reported that s-ABA was effective in delaying dehydration-induced wilt of shoot tips in apple trees. Recently the role of s-ABA for reducing stress in landscape plants has received particular attention.

Glycine betaine (GB) is an ammonium compound in plants and was discovered in the 19th century. This compound increases in response to dehydration stress (Ashraf and Foolad, 2007). Glycine betaine accumulates under abiotic stress conditions in many plants including barely (*Hurdeum vulgare L.*) (Nomura et al., 1995). In many plants endogenous GB is not sufficient to reduce abiotic stresses dehydration (Subbarao et al., 2000) and exogenous application of GB improves the growth and production of plants under stress (Hussain et al., 2008). Foliar application of GB enhanced the growth of plants under drought conditions by maintaining osmotic pressure and improving stomatal conductance, leading to an enhanced carboxylation efficiency of Rubisco and photosynthesis (Sakamoto and Murata, 2002).

Next to oxygen, silicon is the most abundant element on the surface of the earth. Although not considered as an essential element for higher plants, silicon has major roles in leaf turgidity of monocots and cell wall structure (Gong et al., 2003). Silicon can be effective against both biotic and abiotic stresses (Epstein, 1999). Gong et al. (2003) suggested that application of silicon could improve growth of wheat in arid or semi-arid areas. Hattori et al. (2005) reported that nano silicon enhanced drought tolerance in two cultivars of sorgum (*sorgum bicolor*). Agarie et al. (1998) reported that silicon decreased electrolyte leakage and increased cell walls polysaccharides in rice, suggesting that silicon could be involved in thermal stabil-

ity of lipids in cell membranes and prevent structural and functional deterioration of cell membranes when rice plants are exposed to abiotic stresses.

Digoxin (Dig) has been exclusively used in human tissues. According to Lelievre and Lechat (2007), digoxin is a cardiac glycoside that binds to and inhibits sarcolemma-bound (Na^+/K^-) Mg^{2+} -ATPase in human. The inhibition induced by Dig leads to an efflux of K from the cell and, in proportion to the extent of inhibition of the ATPase, an increase in internal sodium ion concentration ($[\text{Na}^+]$) at the inner face of the cardiac membranes. This local accumulation of sodium causes an increase in free calcium concentrations via the $\text{Na}^+–\text{Ca}^{2+}$ exchanger. This free cellular Ca is responsible for the inotropic action of Dig, secondary to the release of Ca^{2+} from the sarcoplasmic reticulum, including the clinical and molecular basis (Lelievre and Lechat, 2007). Edner et al. (1993) studied the influence of Dig on muscular and sympatoadrenergic activity and the serum potassium concentration. The role of this compound is not known in plant tissues.

Grasses are the most common cover crops in apple orchards. Newhouse and Dana (1989) used perennial ryegrass in strawberries. They reported that this living mulch significantly increased strawberry yield and quality and protected strawberry crowns from spring and winter winds and cold temperatures. Granatstein et al. (2010) reported that using living mulch with a mix of perennial ryegrass and tall fescue (*Schedonorus phoenix* (Scop) Holub) in a modern 'Gala' apple orchard system provided good weed control, soil quality benefits and meaningful N contribution. Stefanelli et al. (2009) used a mixture of mammoth red clover (*Trifolium pratense* Var. perenne, L.) and endophytic perennial ryegrass as living mulch for orchard floor management and reported this as a suitable combination in an organic apple production.

Perennial ryegrass is a popular cool season grass, which is commonly used alone and in mixture with other species in modern orchard

and vineyard floors. However, information on the use of various levels of water stress and biostimulants on this grass, particularly as living mulch for orchard floors is lacking. Thus, our objective in this experiment was to study the effect of two levels of ET-based drought in combination with exogenous s-ABA, glycine betaine (GB), s-ABA plus GB, two levels of digoxin, two levels of nano silica and digoxin plus nano silica on performance, and other attributes of perennial ryegrass climatic conditions of the southwest Idaho in the Intermountain West Region of United States.

Materials and Methods

Experimental Site and Turf Establishment. The experimental site was located at the Pomology and Viticulture Orchards and Vineyards of the University of Idaho, Parma Research and Extension Center, Parma, Idaho, USA. Perennial ryegrass (*Lolium perenne* L.) was planted in May of 2013. The history of cultural practices and maintenance of this lawn was well recorded and kept at the University of Idaho Research and Extension Center. This was considered a well-established and perfectly suitable lawn, resembling floor cover (alley way) in many commercial orchards and vineyards in the region. The experiment was performed during spring and summer of 2015.

Calculations for ET_c, Water Applications. The University of Idaho Parma Research and Extension Centre Weather station (Agri-Met) was located at the experimental site and recorded ET data for all agricultural crops including lawns. There were two irrigation systems to create water deficiency at 50% ET_c or 75% ET_c of a full ET_c. Water requirement was calculated based on ET_c where ET_c = ET_r x K_c (Allen et al., 1998) and the details of irrigation calculations were similar to an earlier reports by Fallahi et al. (2011) and Mahdavi et al. (2016).

Biostimulant Treatments. Biostimulant treatments were prepared and applied twice. The first application was made between 8

a.m. and 1 p.m. on 28 July 2015. On this day, temperatures during application ranged from 21° C to 28° C with a clear sky and wind was calm (less than 2 km·hr⁻¹). The second applications were made on 11 Aug. 2015. On this day, temperatures during application ranged from 29° C to 37° C with a clear sky, and the wind was calm (about 1 km/hr). Each solution was uniformly sprayed at the rate of 0.78 l·m⁻². The non-treated control plots were also sprayed with water at the 0.78 l·m⁻². The treatment at each application were as follows:

1. ProTone SG® (s-abscisic acid ; s-ABA; 20% soluble granule formulation; Valent BioScience Inc, Libertyville, Illinois, USA) at 100 µM.
2. Glycine betaine (GB; ≈ 99% purity, Sigma Life Science, Sigma-Aldrich Louis, MO, USA) at 100 mM.
3. S-ABA at 100 µM and GB solutions at 100 mM applied separately at each application time.
4. Digoxin (Dig; Powder; DSM Pharmaceuticals Inc. Greenville, NC, USA) at 0.25 mg·l⁻¹ (Dig₁) or 0.5 mg·l⁻¹ (Dig₂).
5. Nano silica (NanSi; ≈ 99% purity, 20-30 nm, amorphous, US Research Nanomaterials Inc., Houston, TX, USA) at 1 mM (NanSi₁) or at 2 mM (NanSi₂).
6. Dig at 0.25 mg·l⁻¹ and NanSi solutions at 1 mM prepared and applied separately (not in the same solution) at each application time.
7. Un-treated control (water application only).

Measurements. Soil moisture (volumetric water content; VWC) was measured with a fully computerized soil moisture meter, equipped with two 7.5-cm rods, designed for lawn moister (FieldScout Digital Soil Moisture Meter, Model TDR 300, Spectrum Technologies, Aurora, IL, USA) before and after each irrigation and sometimes in between irrigations. At each time, VWC from three different locations within the same plot was measured and averaged. Although ET_c was

the bases for irrigation scheduling, the soil VWC was measured to monitor and compare the ETc-based water application with that shown with a soil moisture meter. Soil moisture measurements were made between 27 July and 7 Sept.

Performance of the lawn was visually rated based on a combination of several factors, including greenness, growth, density and appearance on a scale of 1 to 9, according to the guideline recommended by Morris (2002); where 1 is poor performance, 7 is acceptable and 9 is outstanding. Visual performance ratings for 7 different dates were averaged and reported.

Chlorophyll indices between 10:00 a.m. to 2:00 p.m. were determined on 12 dates between 29 July and 3 Sept. 2015, using equipment based on a new technology (FieldScout Chlorophyll Meter, Model CM 1000, Spectrum Technologies, Aurora, IL, USA). With this instrument, the ambient and reflected 700 nm and 840 nm wavelengths are used to calculate the relative chlorophyll index. It measures conical viewing areas between, 30 and 180 cm from the lens. The instrument measures index of relative chlorophyll content ranges from 0 to 999. At each time, chlorophyll indices of three different locations per plot were measured and averaged. The average values of chlorophyll indices over these 12 dates are presented in this report.

A composite grass-clipping sample from three locations per plot was taken at a height of approximately 3 to 4 cm from the soil level on 24 Aug., 2015. Clippings were washed in a mild solution, containing 1% Liqui-Nox anionic detergent (AlcoNox Inc., White Plains, NY, USA), rinsed in three different 25-l containers of distilled water, and dried in a forced-air oven at 65°C. Clippings fresh weight (FW) and dry weight (DW) were used to calculate dry weight percentage (DW %). The dried leaves were ground to pass a 40-mesh screen using a Cyclotec Sample Mill (Model 1093; Tecator, Hoganas, Sweden). For mineral analysis, specific guidelines and methods described by Gavlak et al. (2005)

were used. Leaf tissue was analysed for potassium (K) by dry ashing at 500°C, nitric/perchloric digestion and the use of Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) (Perkin-Elmer; Norwalk, CT, USA).

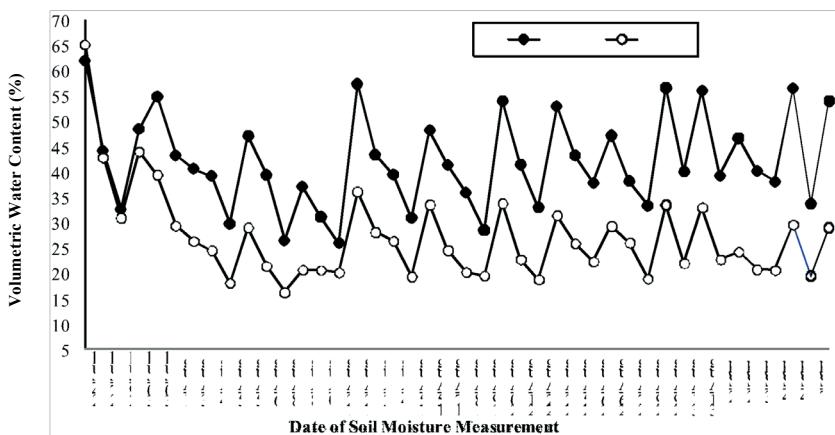
Free proline content was determined according to the method described by Bates et al. (1973). Fully expanded leaves (0.1g) were extracted with 10 mL of 3% (w/v) sulphosalicylic acid. The extract was centrifuged for 10 min. at 3000 RPM. Two mL of supernatant was transferred to fresh test tubes and 2 mL acid ninhydrin and 2 mL glacial acetic acid were added and incubated for 1 hour in a boiling water bath followed by an ice bath. Three mL toluene was added and mixed vigorously until the chromosphere phase separated from the aqueous phase. A calibration curve was prepared from a set of standards consisting of 0, 20, 40, 80 and 100 ppm proline (\approx 99.5% purity, Sigma Life Science, Sigma-Aldrich Louis, MO, USA), using the same procedures as described for samples. The absorbance was read at 520 nm using a spectrophotometer (Bio Mate UV Visible, ThermoScientific, Madison, Wisconsin). This instrument estimated concentrations of proline in unknown samples from a standard curve.

Electrolyte leakage (EL) of leaves was measured according to the method of Valencovic et al. (2006). With this method, 0.5 g of leaves were excised and cut into 2 cm segments after being rinsed three times with distilled deionized water. Leaf segments of each sample were placed in a sterile test tube containing 25 mL of distilled deionized water. Test tubes were shaken on a shaker for 24 hours and the initial conductivity (EC_1) was measured using EC meter (FieldScout Direct Soil EC Meter w/8in Probe, Spectrum Technologies, Aurora, IL, USA). Leaf samples were then autoclaved at 121°C for 1 hour in hot water bath followed by an ice bath and conductivity of killed tissues (EC_2) was measured after tubes cooled to room temperature. The percent electrolyte leakage

was calculated as $(EC_1/EC_2) \times 100$.

Photosynthetic pigments from turfgrass leaves were extracted as described by Arnon (1949). For this purpose, 0.25 g fresh leaves were ground and completely homogenized in 2 ml of 80% (v/v) acetone using a mortar and pestle, and then centrifuged 10 minutes and 6000 RPM. Absorbance of the resulting extracts was measured at three wavelengths 663, 470 and 646 nm for chlorophyll a (Chl a) and chlorophyll b (Chl b), using Bio Mate Uv Visible, ThermoScientific (Madison, Wisconsin) and converted to mg/g leaf fresh weights.

Layout, Experimental Design, and Statistical Analyses. The experimental design was a randomized-complete-block split-plot design with two levels of irrigations as the main plot (main-effect) and stress-inducing biostimulants, either alone or in some combinations, and an un-treated control as sub-plots, each with four blocks. The size of each sub-plot was 2.0 m x 1.5 m. Sufficient buffer zones were kept within each block and between different blocks to prevent cross contamination of irrigation regimes. Analyses of variance and all possible correlation coefficients among all attributes were conducted using SAS Version 9.4 Programme (SAS Institute, Cary, NC, USA), with PROC GLM. Means


were compared by Duncan's multiple range test at $P \leq 0.05$.

Results and Discussion

Interaction. There was no significant interaction between water stress levels and biostimulant treatments for any of the parameters measured in this study.

Soil Volumetric Water Content (VWC). Irrigation was scheduled based on daily ETc data. However, an approximately 25% difference in VWC existed between the 50% ETc and 75% ETc treatments during the course of this study (Fig. 1), which confirms the validity of the use of ETc for creation of these two levels of stress in this study.

Water Stress Effects. Grass clippings with 50% ETc had significantly higher proline and electrolyte leakage but lower visual performance, chlorophyll index (CI), and chlorophyll b than those with 75% (Table 1) and the positive correlation coefficient between chlorophyll index and visual rating was extremely strong ($r = 0.97$). Grass clippings with 75% ETc tended to have higher K concentration than those with 50% although differences were not significant (Table 1). Although we did not have a 100% ETc treatment in this study, high visual ratings (as high as a rating of 9 out of 9) in the 75% ETc indicated that

Table 1. Effect of water stress and biostimulants on some attributes in orchard and vineyard floor cover perennial ryegrass.

Treatment	Visual performance (1-9)*	Chlorophyll Index (1-999)*	Proline (μM/gr FW)	EC (%)	Chlorophyll a (mg/gr FW)	Chlorophyll b (mr/gr FW)	K (% dwt)
Water stress level†							
50% ETc	5.97 b ‡	349 b	13.8 a	28.3 a	0.671 a	0.258 b	1.10 a
75% ETc	8.34 a	510 a	7.7 b	10.4 b	0.703 a	0.340 a	1.41 a
Biostimulant‡							
s-ABA	7.33 a	445 a	11.9 ab	17.1 c	0.68 abc	0.273 bc	1.35 a
GB	7.21 a	428 ab	11.8 ab	16.4 c	0.700 ab	0.327 ab	1.24 ab
s-ABA& GB	7.38 a	448 a	13.2 a	17.1 c	0.805 a	0.385 a	1.36 a
Dig ₁	7.34 a	440 a	10.1 bc	14.9 c	0.678 abc	0.312 ab	1.32 a
Dig ₂	6.68 b	403 bc	8.4 cd	25.2 b	0.615 bc	0.269 bc	1.11 b
NanSi ₁	7.30 a	436 a	11.7 ab	15.1 c	0.716 ab	0.327 ab	1.27 a
NanSi ₂	7.15 a	433 ab	11.6 ab	20.2 bc	0.740 ab	0.258 bc	1.27 a
Dig ₁ NanSi ₁	7.31 a	438 a	10.4 abc	16.3 c	0.697 abc	0.318 ab	1.33 a
Control	6.71 b	396 c	7.3 d	32.2 a	0.555 c	0.219 c	1.10 b

* Visual performance rating: 1= poor performance, progressively to 9 = highest (best) performance. Chlorophyll index= Index of relative chlorophyll content= 0 to 999.

† Abbreviations: ETc = Evapotranspiration of lawn; s-ABA= s-abscisic acid; GB= glycine betaine; Dig= Digoxin; NanSi= nano-silica; FW= fresh weight; dwt= dry weight; EC % = Percentage electrolyte leakage; K= Leaf potassium Content.

‡ Mean values within each column of irrigation or biostimulant treatments followed by different letter (s) were significantly different at $P \leq 0.05$ by Duncan's multiple ranges test.

this level of irrigation was sufficient. However, application of water at 50% ETc over the period of this study was unacceptably stressful.

Effects of Biostimulants. With the exception to the Dig₂ treatment, application of each biostimulant alone or in combination, significantly increased visual performance, chlorophyll index, proline, chlorophyll a and b, and K concentration and decreased percentage electrolyte leakage as compared to control (Table 1) and this observation underscores the value of these biostimulants in drought stress reduction. Our study was conducted on a large scale and under field conditions, similar to a realistic commercial orchard and vineyard floor conditions. However, our results with GB was consistent with Hu et al. (2012) who reported a higher chlorophyll content in perennial ryegrass under abiotic stress in greenhouse conditions. They did not include s-ABA in their study. It is essential

to conduct an economical analysis to see if the use of these biostimulants, particularly digoxin, to reduce lawn stress is justifiable. Also, further study to understand the mode of action of digoxin spray in plants is necessary.

Higher K in the s-ABA-treated clippings is in agreement with a previous report in *Cathamus* plants (Gadallah, 1996). Concentrations of K in clippings were negatively correlated with lawn temperatures ($r=-0.70$) and with clipping percentage electrolytes leakage ($r = -0.69$), which confirms the positive relationship between K and drought resistance (data not shown). Since application of most biostimulants that resulted in a better orchard floor performance also increased leaf K concentration, it is important to study the physiological and biochemical relationship between K and drought tolerance in more detail. For example, it is essential to see if a simple potassium spray could induce and increase

drought tolerance of perennial ryegrass. If this theory is proven to be correct, a simple K spray can replace application of rather expensive biostimulants, while saving water.

Conclusions

High visual ratings in the 75% ETc is a clear indication that this level of irrigation was sufficient to maintain a reasonable turf. However, 50% ETc treatment was too stressful and long-term application of this level of irrigation may lead to poor turf quality in alleyways of orchards and vineyards. Nevertheless, based on the results of this study, application of biostimulants can slow the process of grass quality decline under extremely severe drought conditions (i.e. 50% ETc). This area deserves further study to see if applications of other stress levels such as 65% ETc with these biostimulants can further reduce stress and maintain turf visual quality.

Acknowledgements

Authors wish to express their appreciation to several scientists at the University of Idaho Pomology and Viticulture Program and Parma Research and Extension Centre, including Mike Keister, Bahar Fallahi, Tom Elias and Sheila Keith for their assistance in different parts of this study, Dr. Steve McArtney, ValentBiosciences Corporation, USA and Western Laboratories, Parma Idaho, in particular, John Taberna, Sr. for their unmatched assistances. Also financial support of the University of Idaho is greatly appreciated.

Literature Cited

Addicott, F.T., H.R. Carns, J.L. Lyon, O.E. Smith, and J.L. Mithmcmmeans. 1964. On the physiology of abscisins. *Regulateurs naturels de la croissance vegetale*, p. 687. Coll. int. Centr. natn. Rech. Set. No. 123, Paris.

Agarie, S., H. Uchida, W. Agata, and P.B. Kaufman. 1998. Effects of silicon on stomatal blue-light response in rice (*Oryza sativa* L.). *Plant Prod. Sci.* 2:232–234.

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.

Alves, A.A.C. and T.L. Setter. 2000. Response of cassava to water deficit: leaf area growth and abscisic acid. *Crop Sci.* 40:131-137.

Arnon, D. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. *Plant Physiol.* 24: 1-15.

Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. *Env. Exp. Bot.* 59:206-216.

Bates L., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. *Plant and Soil.* 39:205-207.

Edner, M., P. Ponikowski, and T. Jøgestrand. 1993. The effect of digoxin on the serum potassium concentration. *Scandin. J. Clinic. Lab Invest.* 53(2):187-189.

Epstein, E. 1999. Silicon. *Ann. Review of Plant Physiolo. and Plant Mol. Biol.* 50: 661-664.

Fallahi, E., B. Fallahi, B. Shafii, D. Neilsen and G.H. Neilsen. 2011. The impact of long-term evapotranspiration-based water scheduling in various irrigation regimes on tree growth, yield, and fruit quality at harvest in 'Fuji' apple. *J. Amer. Pomol. Soc.* 65:42-53.

Fallahi, E., C.R. Rom, B. Fallahi, and S. Mahdavi. 2015. Leaf and fruit mineral nutrient partitioning influenced by various irrigation systems in 'Fuji' apple over four years. *J. Amer. Pomol. Soc.* 69(3):137–147.

Farooq, M., A. Wahid., N. Kobayashi, D. Gujita, and S.M.A. Barsa. 2009. *Agron. Sus. Develop.* 29(1):185–212.

Gadallah, M.A.A. 1996. Abscisic acid, temperature and salinity interactions on growth and some mineral elements in *Carthamus* plants. *Plant Growth Reg.* 20:225–236.

Gavlak, R., D. Hornek, and R.O. Miller. 2005. Soil, plant and water reference methods for the western region. 3rd ed. 125 pp.

Goggin D.E., K.J. Steadman, R.J. Neil Emery, S.C. Farrow, R.L. Benech-Arnold, and S.B. Powles. 2009. ABA inhibits germination but not dormancy release in mature imbibed seeds of *Lolium rigidum* Gaud. *J. of Exp. Botany.* 60(12):3387–3396.

Gong, H.J., K.M. Chena, J.C. Chen, S.M. Wang, and C.L. Zhang. 2003. Effects of silicon on growth of wheat under drought. *J. Plant Nut.* 26(5):1055–1063.

Granatstein, D., M. Wiman, E. Kirby, and K. Mullinix. 2010. Sustainability trade-offs in organic orchard floor management. *Proc. Organic Fruit Conference.*

Acta Hort. 873.

Greene, D.W., J.R. Schupp, and H.E. Winzeler. 2011. Effect of Abscisic Acid and benzyladenine on fruit set and fruit quality of apples. Hortscience 46(4):604–609.

Greene, D.W. 2012. Influence of abscisic acid and benzyladenine on fruit set and fruit quality of 'Bartlett' pears. Hortscience 47(11):1607–1611.

Hattori, T., S. Inanaga, H. Araki, P. An, S., Morita, M., Luxova, and L., Alexander. 2005. Application of silicon enhanced drought tolerance in sorghum bicolor. Physiol. Plantarum.123(4):459–466.

Hu, L., T. Hu., P. Zhang, H. Pang, and J. Fu. 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Amer. Soc. Hort. Sci. 137(1):38–46.

Hussain, M., M.A. Malik, M. Farooq, M.Y. Ashraf, and M.A. Cheema. 2008. Improving drought tolerance by exogenous application of glycine betaine and salicylic acid in sunflower. J. Agron. Crop Sci.194:193–199.

Lelievre, L.G. and P. Lechat, 2007. Mechanisms, manifestations, and management of digoxin toxicity. Heart Metabol. 35:9–11.

Lopez-Gardonell, M., L. Allegre, and H. Van Onckelen. 1994. Changes in cell ultrastructure and endogenous abscisic acid and indole-3- acetic acid concentration in *Fatsia japonica* leaves under polyethylene glycol induced water stress. Plant Growth Reg. 15:165–174.

Mahdavi, S., M. Kafi, E. Fallahi, M. Shokrpour, and L. Tabrizi. 2016. Drought and biostimulants impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. J. Plant Nutr. In press.

Morris, K.N. 2002. A Guide to NTEP Turfgrass Ratings. The National Turfgrass Evaluation Program (NTEP). <http://www.ntep.org/reports/ratings.htm>.

Newhouse, A.C. and M.N. Dana. 1989. Grass living mulch for strawberries. J. Amer. Soc. Hort. Sci. 114:859–862.

Nomura, M., M. Ishitani, A.K. Rai, and T. Takabe. 1995. *Synechococcus* sp. PCC7942 transformed with *Escherichia coli* bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiology. 107:703–708.

Peppi, M.C., M.W. Fidelibus, and N. Dokoozlian. 2006. Abscisic acid application timing and concentration affect firmness, pigmentation and color of 'Flame Seedless' grapes. HortScience 41:1449–1445.

Quarrie, S.A. 1989. Abscisic acid as a factor in modifying drought resistance. In: Environmental stress in plants: biochemical and physiological mechanism. Springer verlag, Berlin, Germany. 27–37.

Rowley, M.A., B. Black, and G. Cardon. 2012. Alternative orchard floor management strategies. Utah State Univ. Coop. Ext. Bull. 01.

Sakamoto, A. and N. Murata. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25(2):163–171.

Stefanelli, D., R.J. Zoppolo, and R.L. Perry. 2009. Organic orchard floor management systems for apple effect on rootstock performance in the Midwestern United States. HortScience 44:263–267.

Subbarao, G.V., N.H. Nam, Y.S. Chauhan, and C. Juhansen. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits, J. Plant Physio. 157:651–659.

Tworkoski, T., M. Wisniewski, and T. Artlip. 2011. Application of BABA and s-ABA for drought resistance in apple. J. App. Hort. 13(2): 85–90.

Valentovic, P., M. Luxova, L. Kolarovic, and O. Gasparikova. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ. 52(4):186–191.

Wilkinson, S., and W.J. Davies. 2002. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Env. 25:195–210.

Zhaolong, W. 2002. Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development. Annals Botany. 90(5):623–630.