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Abstract
  From a tree fruit breeder’s perspective, long juvenility represents a significant challenge. Because breeders can 
only make crosses once trees reach maturity and start to flower, they must often wait through a multi-year juve-
nile phase before evaluating fruit and making further crosses. Within wild relatives of apple, much useful natural 
variation exists in length of juvenility. However, the genes and their allelic variation governing the transition from 
the juvenile to adult phase are not as well elucidated as other valued traits for breeding. Some cross-compatible 
apple wild relatives transmit short-juvenility alleles to offspring. To identify these genetic factors and their under-
lying genes, derived families exhibiting variation for length of juvenile phase are needed for QTL analyses. The 
existing natural genetic variation might then be exploited for apple breeding. Combining genetic factors associ-
ated with short juvenility from several distinct sources holds promise for achieving ultra-short juvenility naturally 
to overcome the problem of long juvenility in apple.

  Juvenility duration in apple trees. To enjoy 
flowers or fruit of hardwood perennials such 
as apple (Malus × domestica), humans must 
endure the juvenile phase of plants. All plants 
pass through a juvenile phase to prepare for 
maturity and the concomitant production of 
flowers, fruit, and seeds. The juvenile phase 
can be defined as the extended period of 
post-germination vegetative growth in which 
flowering is suppressed even under otherwise 
favorable environmental conditions (van 
Nocker and Gardiner, 2014). In this phase, a 
plant focuses its energy on vegetative growth 
and development to reach an optimal size and 
architecture for photosynthesis, water and 
nutrient uptake, withstanding environmental 
stresses, and physically supporting reproduc-
tive organs (Apple et al., 2002; Bernier et al., 
1981; Huijser and Schmid, 2011). Perennial 
hardwood plants can have juvenile phases up 
to 40 years (Robinson and Wareing, 1969; 
van Nocker and Gardiner, 2014). In high-
value crops such as apple, long juvenility is a 
major problem from a breeder’s perspective. 

Seeds arising from crossing must be germi-
nated and seedlings raised through juvenil-
ity before their (hopefully superior) fruit can 
be evaluated (Luby and Shaw, 2001). A short 
juvenile phase allows earlier fruit evaluation 
and creation of the next generation (Liebhard 
et al., 2003)
  Much variation exists in duration of the 
juvenile period across and within apple (Ma-
lus) species. In apple, the juvenility period 
is typically 5-12 years (Flachowsky et al., 
2012; van Nocker and Gardiner, 2014) and 
such variation is caused by environmental or 
genetic differences (Hanke et al., 2007) as 
the transition to maturity is a complex pro-
cess. Environmental factors that influence 
flowering can include temperature, water, 
light, and nutrients (Kurokura et al., 2013; 
van Nocker and Gardiner, 2014). Growing 
tree fruit seedlings under conditions that pro-
mote rapid and continuous growth, such as in 
a greenhouse, might help shorten juvenility 
(van Nocker and Gardiner, 2014; Volz et al., 
2009; Zhang et al., 2007).
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  Existing genetic variation in apple en-
ables some plants to flower in less than four 
years, which is considered a short juvenility 
period. Certain dessert and ornamental apple 
cultivars, when used as parents, generated a 
higher proportion of seedlings flowering in 
four years after crossing than others, espe-
cially with use of precocious rootstocks (Fig. 
1). In wild Malus species, the evolutionary 
leap to short juvenility can be rationalized. 
For example, M. sieversii evolved in the 
dense forests of Kazakhstan and neighbor-
ing countries (Volk et al., 2013). Becoming 
reproductive sooner to avoid years of intense 

competition and produce the next generation 
quickly could be a successful evolutionary 
strategy to ensure optimal representation in 
future generations. It has also been argued 
that long juvenility indicates tree establish-
ment has priority over fruit and seed pro-
duction; perhaps evolutionarily priority was 
given to tree survival over many years to 
allow seed production in years of optimal 
weather and minimal stresses (Lakso and 
Goffinet, 2017). Certain accessions of apple 
wild relatives such as M. sieversii, M. bac-
cata, M. prunifolia, and the ornamental M. × 
zumi pass short juvenility to their offspring 

Fig. 1. Proportion of total number of seedlings from three cultivars and one wild relative observed to be 
flowering since the previous year, monitored four, five, and six years after crossing. Data is a subset of 
flowering observations for 35 parents and 107 families in the Washington State University Apple Breed-
ing Program from 1998 to 2003 (courtesy of Bruce Barritt and Kate Evans); number of families included 
were 2 for M. × zumi ‘Calocarpa’, 19 for ‘Cripps Pink’, 19 for ‘Gala’, and 24 for ‘Fuji’, with an average 
number of seedlings in these families of 128 (B. Barritt, pers. comm.). “Typical” juvenility periods are 
displayed by the ‘Gala’ and ‘Fuji’ distributions, while seedlings of ‘Cripps Pink’ effectively had a juvenil-
ity period approximately one year shorter, and M. × zumi-derived juvenility was approximately one year 
shorter again. These seedlings had been bud-grafted onto M.9 rootstock two years after crosses were made 
(Evans, 2013), for the practical breeding purposes of reducing natural juvenility, compressing variation in 
juvenility period among seedlings, reducing tree sizes, and mimicking commercial practices of the U.S. 
Pacific Northwest region.
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(Schmidt, 1994; Volk et al., 2013). For ex-
ample, among seedlings of Roșu de Cluj 
(= M. × domestica) × M. niedzwetzkyana 
(= M. sieversii), average time to flowering 
was 7.0 years, whereas among seedlings of 
M. prunifolia × M. niedzwetzkyana, average 
time to flowering was 4.9 years (Cătălina et 
al., 2015). Rootstocks can also promote early 
fruit bearing of scions, known as precocity, 
and precocity was positively correlated with 
short juvenility (Janick and Moore, 1996). 
In an apple rootstock progeny derived from 
‘Ottawa 3’ (ancestry includes M. baccata, M. 
sylvestris, and M. prunifolia) and ‘Robusta 5’ 
(M. × robusta), genetic factors Eb1 and Eb2 
were associated with precocity (Fazio et al., 
2014). To the extent that these various sourc-
es of short juvenility are from distinct species 
(e.g., M. × zumi is a hybrid of M. baccata × 
M. sieboldii, and M. × robusta is M. baccata 
× M. prunifolia; Rehder, 1951), such acces-
sions likely have unique alleles at the same or 
different loci as they evolved under different 
circumstances.
  Several genes have been characterized in 
other plants that appear to govern the vegeta-
tive-to-flowering phase change. Floral induc-
tion in Arabidopsis is influenced by multiple 
inputs that regulate expression of genes in-
volved in the transformation of the vegeta-
tive meristem into an inflorescence meristem 
(Hanke et al., 2007; Poethig, 2013), possibly 
involving microRNA (An et al., 2018; Po-
ethig, 2013). These genes are orthologous 
across many plant species (Endo et al., 2005; 
Hsu, 2006; Kotoda and Wada, 2005), in-
cluding apple (Flachowsky et al., 2007). A 
Juvenile-to-Adult transition (JAT) gene was 
reported in olive (Fernández-Ocaña et al., 
2010). Variation in such genes might underlie 
the allelic variation observed in apple.
  A transgenic approach to shortening apple 
juvenility has been reported. The approach 
consists of the overexpression in apple of a 
birch (Betula pendula) MADS4 transcrip-
tion factor and has been used for introgres-
sion of fire blight resistance from apple wild 
relatives (Schlathölter et al., 2018; Luo et al., 

2020b). In the final generation, the transgene 
segregates, and null segregants are kept. In 
the U.S., these null segregants have been of-
ficially ruled non-transgenic (USDA, 2014), 
although public acceptance is far from unani-
mous (Ishii and Araki, 2016). In other regions 
such as Europe, null segregants have yet to 
be ruled as non-transgenic, and the approach 
has not been adopted in breeding. A detail 
not included in the Schlathölter et al. (2018) 
study was the length of time for null segre-
gants to flower and fruit, which would be as 
long as a typical juvenile period. Combining 
this transgenic approach with use of natural 
variation in apple juvenility period could be 
advantageous, especially for introgression of 
other valuable alleles from wild sources (Luo 
et al., 2020a).
  Harnessing natural genetic variation of 
juvenility in apple. To understand and exploit 
the natural variation of juvenility period in 
apple, a concerted effort is required. Specific 
regions in the genome with genetic varia-
tion associated with observed differences in 
a particular trait, i.e., quantitative trait loci 
(QTLs) (Xu et al., 2017), need to be discov-
ered and characterized for juvenility, as they 
have for many other valuable apple traits 
(e.g., Costa et al., 2010; Guan et al., 2015; 
Sadok et al., 2015). Across traits, favorable 
alleles can be accumulated via breeding to 
develop superior new cultivars. The same 
strategy is used for some traits with multiple 
influencing QTLs, such as disease resistance 
(Baumgartner et al., 2015; Kellerhals et al., 
2011, 2013). When favorable alleles from the 
various loci associated with a trait are com-
bined into a single individual, each allele is 
expected to incrementally raise the trait level 
of the individual (Mundt, 2014). Once they 
are discovered and characterized, combin-
ing genetic factors for short juvenility from 
several species of apple holds the promise of 
achieving ultra-short juvenility in this impor-
tant crop (Fig. 2). Another opportunity is aid-
ing introgression. Apple’s wild relatives also 
harbor many other alleles for valuable attri-
butes such as disease resistance (Forsline and 
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Aldwinkle, 2004), abiotic stress tolerance, 
and desirable productivity and fruit quality 
but their introgression into elite apple culti-
vars is hampered by long juvenile phases over 
multiple generations (Volk et al., 2015). Using 
parents with natural short juvenility during in-
trogression efforts could speed the process by 
shaving off years at each generation.
  Challenges to combining short juvenil-
ity alleles. Genetic architecture of juvenil-
ity, pleiotropy, and epistasis might represent 
significant challenges in exploiting short ju-
venility alleles in breeding. Alleles for short 
juvenility might be associated pleiotropically 
with undesirable phenotypes such as erratic 
bloom or insufficient vigor. Combining al-
leles over multiple loci could also result in 

Fig. 2. Distinct sources of short juvenility alleles in apple (left) might represent alleles for genes in the 
well-described plant flowering pathway  (right: MdFT (FLOWERING LOCUS T) proteins along with Md-
SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) transcripts activate downstream floral meristem 
identity genes such as MdAP1 (APETALA 1), while MdTFL1 (TERMINAL FLOWER 1) products act an-
tagonistically in the pathway; Mathieu et al., 2007; Mimida et al., 2013; Su et al., 2018) or other biochemi-
cal pathways. Combining multiple genetic factors for short juvenility in apple might result in ultra-short 
juvenility.

unexpected and undesirable phenotypes. 
Short juvenility alleles might be tightly 
linked in coupling phase to alleles associated 
with undesirable phenotypes such as small 
fruit size, flesh astringency, biennial bearing, 
or disease susceptibility.  Another challenge 
to harnessing natural variation would be if al-
leles at many, small-effect QTLs are required 
to achieve short juvenility. Genetically map-
ping the loci influencing juvenility and un-
derstanding how their alleles interact would 
help address the challenges.

Conclusion
  Long juvenility represents a significant 
challenge from a tree fruit breeder’s perspec-
tive. In apple, a large amount of variation in 
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juvenile period exists, especially considering 
wild relatives. A concerted effort is required 
to identify and characterize the genetically 
variable loci underlying the transition to 
maturity so the knowledge can be used for 
breeding purposes. Short juvenility would 
enable apple breeders to efficiently evaluate 
fruit traits and reach next generations faster. 
Short juvenility would also empower the 
introgression of valuable alleles from wild 
species quickly and efficiently. Combining 
natural genetic factors associated with short 
juvenility from several distinct sources holds 
promise for achieving ultra-short juvenility 
to overcome the problem of long juvenility 
in apple.
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