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Abstract

Agricultural researchers often use factorial treatment structures, where treatments consist
of combinations of two or more levels of two or more factors. Factorial experiments are
more efficient than performing experiments involving one factor at a time. They also allow
researchers to study the effect of each factor on the response variable, as well as the effects
of interactions between factors on the response variable. When interactions are significant,
proper interpretation of results is often complicated. Over the years, several post-analysis of
variance (ANOVA) techniques have been used to interpret results. A partial data set for a 2 x
2 x 4 factorial arrangement of treatments in a randomized complete block design was used to
demonstrate and compare three commonly used post-ANOVA methods when the three-way
interaction is significant. In the presence of interaction, there may be situations where mar-
ginal means (main effects means) can be compared but slicing the data set without separating
the data usually provides the most information and allows correct interpretation of the results.
The advantage of slicing is that all the data are used for the analysis and the effect of one fac-

tor can be evaluated while holding the other factors fixed.

Horticulturists often perform experiments
with a factorial treatment design, where there
are two or more independent factors (inde-
pendent variables), and all levels of each
factor are combined with all levels of every
other factor. Sometimes, for various reasons,
the factorial treatment design may be modi-
fied. Since the number of treatment combi-
nations increases rapidly as the number of
factors increases, a fractional may be used
where only a subset of all possible treatment
combinations are used (Ribeiro et al., 2019).
Augmented factorials are factorial experi-
ments that also include one or more addition-
al treatments and were discussed by Marini
(2003) and Piepho et al. (2006). Factorial
experiments are more efficient (Fisher, 1926)
and more powerful (Chin and Lee, 2008;
Czitrom, 1999) than studying one factor at a

time while other factors are kept fixed. This
paper will be limited to a discussion of only
complete factorials. The primary reason for
considering factorial experiments is to deter-
mine if the effect of one level of a factor on
the response variable depends on the level
of another factor. However, when interac-
tions are significant post-analysis of variance
(ANOVA) procedures may be complicated.
For this reason, some authors choose to ig-
nore significant interactions and discuss only
main effects. Even worse, some researchers
may not even recognize the factorial nature
of the experiment and simply perform a one-
way ANOVA on all treatment combinatons.
If the P-value for treatment is significant,
a multiple comparison is used for all pos-
sible pair-wise comparisons of the treatment
means. However, the reason that we perform
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factorial experiments is because we want to
know if two or more factors interact. Ignor-
ing interactions, or comparing simple effect
means (cell means) may lead to misinterpre-
tation of the results. Although still complicat-
ed, advances in statistical software packages
over the past several decades have facilitated
the interpretation of interactions.

Types of independent variables. Factorial
experiments may involve only quantitative
factors, such as temperature, several levels
of fertilizer, or several concentrations of a
growth regulator, and are best analyzed with
multiple regression (Chew, 1977; Hinkel-
mann and Kempthorne, 1994). Experiments
involving only qualitative factors, such as
cultivars, rootstocks, and types of potting
media, are analyzed with ANOVA and will be
discussed in more detail in this paper. Experi-
ments involving both qualitative and quanti-
tative factors can be analyzed with analysis
of covariance (ANCOVA) as described by
Marini and Ward (2012).

Testing hypotheses with ANOVA. Interpre-
tation of experiments with more than three
factors is often very complex and such ex-
periments should be avoided if possible.
To demonstrate analysis of a 2 x 4 x 2 fac-
torial experiment, a partial data set from a
raspberry high tunnel experiment will be
used; where two cultivars (‘Josephine’ and
‘Polka’) were grown in high tunnels covered
with four plastics (GIN, KLP, TUFF, and
UVB) for two years (2016 and 2017). The
experimental design was a randomized com-
plete block (RCBD), with three blocks. The
RCBD is common in agricultural research,
but factorial treatments can be used with oth-
er experimental designs. The data were mod-
ified to produce a three-way interaction. With
this factorial treatment structure, we can test
the main effects of the three factors, three
two-way interactions to test the additive re-
lationship between each pair of factors, and
the three-way interaction to test the additive
effects of all three factors.

The following is another way of describ-
ing the seven hypotheses that can be tested

with a three-way ANOVA.

1. Yields for the two cultivars are equal (‘Jo-
sephine’ = ‘Polka’),

2. Yields for the four plastics are equal (GIN
=KLP =TUFF =UVB),

3. Yields for the two years are equal (2016
=2017),

4. The effects of cultivar and plastic are ad-
ditive (the effect of a cultivar does not de-
pend on the plastic; this is the cultivar x
plastic interaction),

5. The effects of cultivar and year are addi-
tive (the effect of a cultivar does not de-
pend on the year; this is the cultivar x year
interaction),

6. The effects of plastic and year are additive
(the effect of a plastic does not depend on
the year; this is the plastic x year interac-
tion),

7. The effects of cultivar, plastic and year are
additive (the effect of a cultivar does not
depend on the combination of plastic and
year; the effect of a plastic does not depend
on the combination of cultivar and year;
the effect of a year does not depend on the
combination of plastic and cultivar; this is
the cultivar x plastic x year interaction).

Identifying interactions. Three different
approaches that are sometimes used in agri-
cultural research to interpret interactions will
be compared. The following analyses can be
performed with most of the better statistical
software packages that can appropriately an-
alyze mixed models, but for this paper SAS’s
GLIMMIX procedure will be used (SAS Inst.
Inc. 2013). Before any statistical analyses are
performed it is a good idea to “get to know
your data” with some scatter plots to observe
patterns in the data and to identify unusual
observations that are sometimes called “out-
liers”. Descriptive statistics (N, means, max-
imum, minimum, variances, etc.) can help
identify errors in coding, unusual observa-
tions, and possible violation of the assump-
tion of homogenous treatment variances.
Visualizing data is often easier with plots of
treatment means (Fig. 1). PROC GPLOT
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Figure 1. Plots of means for 2 two raspberry cultivars grown in high tunnels under four types of
plastic for two years. The symbols represent the mean for each combination of cultivar (‘Josephine’
on the left and ‘Polka’ on the right), plastic and year, also called simple means or cell means.

was used to produce the graphs in Figure 1.
Yields were generally higher in 2017 than in
2016 and yields tended to be slightly higher
for ‘Josephine’ than for ‘Polka’ in 2017, but
not in 2016, indicating a possible cultivar by
year interaction. For ‘Josephine’ yields were
lowest for KLP in 2016, but highest in 2017
and the opposite was true for ‘Polka’ under
KLP in 2017. Plastic affected yield in 2017
to a greater extent than in 2016 regardless of
cultivar. Taken together there is visual evi-
dence of a three-way interaction because the
lines for the two cultivars are not parallel for
cultivars within years or years within each
cultivar.

Following graphical examination of the
data, we can use formal statistical tests to
verify our preliminary interpretation. In this
case we can perform a three-way ANOVA
with block as a random effect. Depending on
the results from the ANOVA, different post-
ANOVA analyses may be used to help inter-
pret the results.

1. If no interactions are significant, but one
or more main effects are significant, then
all pairs of marginal means (main effect
means) for a factor can be compared or
means can be compared against a control
or some other treatment.

2. If the highest-order interaction (in this
case the 3-way interaction) is not sig-

nificant, but one or more lower-order
interaction(s) (in this case the 2-way in-
teractions) are significant, simple effects
or cell means can be compared because
marginal means may not properly repre-
sent the treatment differences at the vari-
ous levels of a factor. Cell means can be
compared only as simple effects, where
all but one factor is fixed at a certain level.

3. If the highest-order interaction is signifi-
cant, then the marginal means and simple
effects associated with lower-order in-
teractions become less interesting, even
if they are significant. The three-way in-
teraction can be dissected by comparing
simple effects, to test the effect of one fac-
tor on the response variable while holding
the other two factors constant.

In the horticultural literature, several post-
ANOVA tests have been used when inter-
actions were significant. Some approaches
are more appropriate than others and some
provide more information than others, but
the interpretation of results often depends on
the approach used. Below, some of these ap-
proaches will be demonstrated to dissect the
significant three-way interaction. Many re-
searchers hope that higher-level interactions
are not significant because results are diffi-
cult to interpret. Most researchers consider
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P-values < 0.05 to be significant. However,
the American Statistical Association recently
stated that “well-reasoned statistical argu-
ments contain much more than the value of
a single number and whether that number
exceeds an arbitrary threshold”, such as P <
0.05 (Wasserstein and Lazar, 2016). Since we
perform factorial experiments specifically
because we want to know if there is interac-
tion, I consider a P-value of 0.08 as adequate
evidence to reject the null hypothesis that the
factors are additive because I want to explore
the interaction. Hinkelmann and Kempthorne
(2005) suggested that interactions with P-
values as high as 0.1 may be investigated by
looking at simple effects.

One-way ANOVA on all treatment com-
binations. Table 1 shows the SAS code to
perform the three-way ANOVA with PROC

GLIMMIX, along with some of the output.
The “Covariance Parameter Estimates” table
shows the estimates of the variance compo-
nent parameters. The estimate of the block
variance component is 0.01124 and the es-
timate of the error variance component is
2.5545 (labelled “Residual”). Options can
be added to the model statement to request
confidence intervals. The second table is the
ANOVA showing the sources of variation
or “Effect”, the degrees of freedom for the
numerator and the denominator, the F-value,
and the probability of a greater F. The ANO-
VA table shows that the main effect of year
is significant (P < 0.0001), but there is insuf-
ficient evidence to reject the null hypothesis
that means for plastics or cultivars are equal.
The only two-way interaction that is signifi-
cant is year x cultivar (P = 0.0242). In cases

Table 1. SAS code and output for a three-way analysis of variance in a randomized complete block

design using the GLIMMIX procedure.

Proc GLIMMIX;

Class block year cultivar plastic;
Model yield = year plastic cultivar plastic*year plastic*cultivar
cultivar*year cultivar**plastic*year;

Random block;
Run;

Parameter Estimates

Cov Parm | Estimate | Standard Error
block 0.01124 0.1758
Residual 2.5545 0.6596

Type I1I Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
year 1 30 41.62 | <.0001
plastic 3 30 0.38 | 0.7656
cultivar 1 30 0.90 | 0.3495
year*cultivar 1 30 5.64| 0.0242
cultivar*plastic 3 30 1.96 | 0.1407
year*plastic 3 30 0.4110.7484
year*cultivar*plastic 3 30 2.99 | 0.0464
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Table 2. SAS code plus output when a three-way factorial in a randomized complete block design

is analyzed as a one-way ANOVA with 16 treatme

nts using the GLIMMIX procedure.

Title ‘One-way ANOVA with 16 treatments (trt)’;

Proc GLIMMIX;
Class block trt;
Model yield = trt;
Random block;

LSmeans trt / adjust = tukey lines;

Run;
Type III Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
trt 15 30 4.36 | 0.0003
Cultivar Plastic Yield
2016 | Josephine GIN 73b?
KLP 6.1b
UVB 7.6b
TUFF 7.0b
Polka GIN 7.7b
KLP 7.5b
UVB 7.1b
TUFF 8.3b
2017 | Josephine GIN 9.9 ab
KLP 13.3a
UVB 10.4 ab
TUFF 10.7 ab
Polka GIN 10.3 ab
KLP 7.8b
UVB 9.2 ab
TUFF 11.0 ab

% LSmeans followed by common letters do not differ at the 5%, by Tukey-Kramer test.

such as this, where the highest-level inter-
action is significant (P = 0.0464), the main
effects and the lower-level interactions are
usually of less interest than understanding
the three-way interaction.

Agricultural researchers sometimes ignore
significant interactions and only consider
marginal means. Although such an approach
is usually discouraged, Hinkelmann and
Kempthorne (2005) suggest that tests for
main effects are useful and meaningful when
codirectional interaction is present, but not
when antidirectional interaction is present.
Codirectional interaction occurs when the

change in the response is in the same direc-
tion and antidirectional interaction occurs
when the change in response is in the oppo-
site direction.

In the horticultural literature we can find
several ways to dissect interactions, and each
has advantages and disadvantages. One way
is to create a new variable by recoding each
combination of treatments and perform a
one-way ANOVA on the 16 treatment com-
binations, followed by performing a multiple
comparison, such as the Tukey-Kramer test
on the 16 means (Table 2). The table for
the Covariance Parameter Estimates is not
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shown because the estimates are the same
as for the three-way ANOVA. As expected,
the treatment is significant (P = 0.0003). The
SAS code in Table 2 generates three addi-
tional tables that are not shown because they
are large. The first table shows the treatment
(trt) Least Squares Means which shows for
each treatment the Estimate or Least Squares
mean, the standard error of the estimate, the
denominator degrees of freedom, the #-value
to test the hypothesis that the LSmean is
equal to zero and its P-value. In most cases,
we do not care if the LSmeans are equal to
zero. The second table in the output is the
“Differences of trt Least Squares Means Ad-
justment for Multiple Comparisons: Tukey-
Kramer”, where there is a row for each of
the 120 pair-wise comparisons. Results
shown in the third table labelled “Tukey-
Kramer Grouping for trt Least Squares
Means (Alpha=0.05)”, requested with the
LINES option in the LSMEANS statement,
are summarized in Table 2. In the output the
treatment combinations were arranged in
descending order for yield, so the data were
rearranged in Table 2 to facilitate interpreta-
tion. Based on the Tukey-Kramer test, ‘Jose-
phine” under KLP in 2017 had higher yields
than all other treatment combinations except
five. This approach allows us to determine
which treatment combinations are equal and
it is relatively easy to perform and simply re-
quires creating new treatment names for each
treatment combination. However, many of
the comparisons are not of interest. For ex-
ample, we probably do not care if yield for
‘Josephine’ under GIN in 2017 is different
than ‘Polka’ under KLP in 2016. Valid sim-
ple effects for this experiment could be ‘Jo-
sephine’ under GIN in 2016 vs. ‘Josephine’
under GIN in 2017, or ‘Josephine’ under GIN
in 2017 vs. ‘Josephine’ under KLP in 2017.
Another problem with this approach is that
pairwise, multiple comparisons are appropri-
ate only for unstructured treatments (Chew,
1976; Gates, 1991; Lowry, 1992; Yossa and
Verdegem, 2015), and factorial experiments
have structured treatments. Generally, per-

forming multiple comparisons of individual
factorial treatments is discouraged, but some
statisticians indicated they might condone
such an approach if the main effects were not
significant (D.B. Duncan) or if their F-ratios
were less than two (J.W. Tukey) (Chew,
1977). Older textbooks often suggest using
contrasts to make preplanned comparisons of
interest (Lentner and Bishop, 1993).
Dividing the data set. A common post-
ANOVA technique to interpret interaction in-
volves physically slicing the data to analyze
simple main effects by breaking the data set
into separate parts. In the case of our three-
way factorial, we could perform two two-
way ANOVAs on each year, two two-way
ANOVAs for each cultivar and four two-way
ANOVAs for each plastic. If the two-way
interaction is not significant, then main ef-
fect means can be compared with a multiple
comparison. If the interaction is significant,
then one-way ANOVAs can be performed
on each level of each variable, followed by
a multiple comparison. For factors with only
two levels, such as year and cultivar, mul-
tiple comparisons are not needed because
the ANOVA tests the hypotheses that the
two levels are equal. Alternatively, we could
perform four one-way ANOVAs to compare
plastics within each combination of cultivar
and year. For brevity, Table 3 shows results
for four ANOVASs to compare plastics within
each combination of year and cultivar. Inter-
pretation of results when simple main effects
are analyzed is different than when compar-
ing all 16 treatment combinations in Table 2.
Notice that the P-values for ‘Josephine’ in
2016 and ‘Polka’ in 2017 are not significant,
indicating that yield was not affected by the
four plastics. For ‘Polka’ in 2016, TUFF had
higher yield than UVB. For ‘Josephine’ in
2017, KLP had higher yields than GIN. Ac-
cording to Schabenberger et al. (2000) there
are two disadvantages of physical slicing: 1.)
By physically slicing by year and cultivar,
each analysis contributes only % of the total
information. The error degrees of freedom
are reduced, and the individual analyses have
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Table 3. SAS code for physically slicing the data set, using the SORT procedure, to perform four
one-way ANOVAs in a RCBD. The ANOVAs for each combination of year and cultivar tests the null
hypothesis that yield is not affected by plastic. Output for the four ANOVAs is presented in one table.

Proc sort; by year cultivar; run;
Proc GLIMMIX; by year cultivar;

Class block plastic;
Model yield = plastic;
Random block;

LSmeans plastic / adjust = tukey lines;

Run;
2016 2017

Plastic Josephine Polka Josephine Polka
GIN 73a? 7.7 ab 99b 103 a
KLP 6.1a 7.5ab 13.3a 7.8a
UVB 7.6a 7.1b 10.4 ab 9.2a
TUFF 7.0a 83a 10.7 ab 11.0a

P-value from one-way ANOVA
0.3280 \ 0.01566 0.0267 0.5828

“ Values within columns followed by common letters do not differ at the 5% level by Tukey-Kramer test.

less power than the combined analysis where
interaction was detected; and 2.) Physically
slicing is more work and requires performing
at least four ANOVAs which need to be com-
bined for a meaningful joint interpretation.

Slicing without separating the data. A third
post-ANOVA approach involves slicing
without separating the data (Schabenberger
et al., 2000) to make meaningful compari-
sons of cell means. The significant year x
cultivar x plastic interaction can be sliced in
the following ways: by year, by cultivar, by
plastic, by year x cultivar, by year x plastic,
and by cultivar x plastic. The last three ways
are most meaningful, because they compare
the levels of one factor while holding the
other two factors fixed. The SAS code for the
three ways of slicing the LSMEANS, along
with the cell means for each combination of
year and cultivar are shown in Table 4 and
cell means for each combination of year and
plastic are shown in Table 5. Although the
cell means in Tables 4 and 5 are identical to
those in Table 3, the letters for the compari-
sons are different. The SLICEDIFF option in
the LSMEANS statement eliminates many

of the uninteresting comparisons shown in
Table 2. The first LSMEANS statement com-
pares the four plastics within each combina-
tion of year and cultivar. The cell means are
the same as in Table 3 but results from the
multiple comparison is different. For both
cultivars in 2016, the plastic covers did not
affect yield (Table 4). However, in 2017 for
‘Josephine’, GIN had lower yields than KLP
or UVB. For ‘Polka’ in 2017, KLP had lower
yields than TUFF. The second LSMEANS
statement compares the two cultivars within
each combination of year and plastic. In 2016
the two cultivars had similar yields for each
type of plastic, but in 2017 ‘Josephine’ had
higher yields than ‘Polka’ under KLP. The
16 cell means are shown again in Table 5,
along with P-values for the comparison of
years within each combination of cultivar
and plastic. ‘Josephine’ had significantly
higher yields in 2017 for all four plastics. For
‘Polka’ years were different for only TUFF.
Summary. It is obvious that the interpreta-
tion of the results and conclusions often vary
depending on the post-ANOVA procedure
that is used in the presence of a significant



34

JOURNAL OF THE AMERICAN POMOLOGICAL SOCIETY

Table 4. SAS code for slicing the data set without separating the data using the slicediff option in the

LSmeans statement. Output from the ANOVA and
be acceptable in a publication.

the LSmeans are rearranged in a way that would

Title ‘ANOVA with Slicediff’;

Proc GLIMMIX;

Class block year cultivar plastic;
Model yield = year plastic cultivar plastic*year cultivar*year
cultivar*plastic cultivar*plastic*year;

Random block;

LSmeans cultivar*plastic*
LSmeans cultivar*plastic*
LSmeans cultivar*plastic*

year / slicediff = cultivar*year.
year / slicediff = plastic*year.
year / slicediff = cultivar*plastic.

Run;
2016 2017

Plastic Josephine | Polka Josephine Polka
GIN 733a? 7.7a 99 b 10.3 ab
KLP 6.1a 7.5a 13.3a *V 7.8b
UVB 7.6a 7.1a 104 a 9.2 ab
TUFF 7.0a 83a 10.7 ab 11.0a

P - value from ANOVA
Year <0.0001
Plastic 0.7656
Cultivar 0.3495
Year*Plastic 0.7484
Year*Cultivar 0.0242
Year*Cultivar*Plastic 0.0457

2 LSmeans within each column (combination of cultivar and year) followed by common letters do not differ at the 5% level by

SLICEDIFF, requested with the first LSmeans statement.

¥ Asterisk between cultivars for each combination of year and plastic indicates the two cultivars differ within a year at the 5%

level, requested with the second LSmeans statement.

three-way interaction. Analyzing the data as
a one-way ANOVA and comparing all 16 cell
means indicates that the eight combinations
of cultivar and plastic in 2016 were not dif-
ferent, and in 2017 ‘Josephine’ under KLP
had higher yields than ‘Polka’ under KLP
(Table 2), but the only significant pair-wise
comparison is not very meaningful. When
data were physically sliced to perform one-
way ANOVAs for each combination of
year and cultivar, only two pair-wise com-
parisons were significant. In 2016 ‘Polka’
under TUFF had higher yields than under
UVB, and in 2017 ‘Josephine’ under KLP
had higher yields than under GIN (Table 3).
Dissecting the three-way interaction with the

three LSmeans statements limits the pairwise
comparisons to mostly meaningful compari-
sons. Plastic covers affected yield for both
cultivars in 2017 but not in 2016. ‘Josephine’
had higher yields than ‘Polka’ under KLP in
2017, but not in 2016. For ‘Josephine,’ yields
were higher in 2017 than in 2016 for all plas-
tics, but for ‘Polka’ yields for the two years
were not different under any of the plastics.
The reason for different results is because the
standard error of the difference was 0.9246
and 1.3050 for the one-way and the three-
way ANOVAs, respectively and both had 30
degrees of freedom in the denominator, but
numerator degrees of freedom varied. For
the four ANOVAs the standard error of the
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Table 5. The effect of year on mean yield for combinations of raspberry cultivar and plastic. Output
requested with the third LSmeans statement in Table 4.

Josephine Polka
Year GIN KLP UVB TUFF GIN KLP UVB TUFF
2016 7.3 6.1 7.6 7.0 7.7 7.5 7.1 8.3
2017 9.9 13.3 10.4 10.7 10.3 7.8 9.2 11.0
P-value 0.0532% <0.0001 0.0397 0.0087 0.0587 0.8493 0.1283 0.0497

% P-values for testing the hypothesis that years are equal within each combination of cultivar and plastic, requested with the third

LSmeans statement in Table 4.

difference was 0.7546, 0.2681, 0.8544, and
0.8544 for ‘Josephine’ in 2016, ‘Josephine’
in 2017, ‘Polka’ in 2016 and ‘Polka’ in 2017
with only 8 degrees of freedom in the denom-
inator. When using post-ANOVA procedures
to dissect the significant interactions, authors
are encouraged to consider methods that will
make the pair-wise comparisons that are
most meaningful. This is generally accom-
plished by comparing the levels of one fac-
tor while holding the other factors fixed by
slicing the highest-order interaction(s) that is
significant.
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