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A Note on the Analysis and Interpretation of Designed
Experiments with Factorial Treatment Structure

Additional index words: analysis of variance, interaction, marginal means, multiple comparisons, simple effects

Abstract
  Agricultural researchers often use factorial treatment structures, where treatments consist 
of combinations of two or more levels of two or more factors. Factorial experiments are 
more efficient than performing experiments involving one factor at a time. They also allow 
researchers to study the effect of each factor on the response variable, as well as the effects 
of interactions between factors on the response variable. When interactions are significant, 
proper interpretation of results is often complicated. Over the years, several post-analysis of 
variance (ANOVA) techniques have been used to interpret results. A partial data set for a 2 x 
2 x 4 factorial arrangement of treatments in a randomized complete block design was used to 
demonstrate and compare three commonly used post-ANOVA methods when the three-way 
interaction is significant. In the presence of interaction, there may be situations where mar-
ginal means (main effects means) can be compared but slicing the data set without separating 
the data usually provides the most information and allows correct interpretation of the results. 
The advantage of slicing is that all the data are used for the analysis and the effect of one fac-
tor can be evaluated while holding the other factors fixed. 
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  Horticulturists often perform experiments 
with a factorial treatment design, where there 
are two or more independent factors (inde-
pendent variables), and all levels of each 
factor are combined with all levels of every 
other factor. Sometimes, for various reasons, 
the factorial treatment design may be modi-
fied. Since the number of treatment combi-
nations increases rapidly as the number of 
factors increases, a fractional may be used 
where only a subset of all possible treatment 
combinations are used (Ribeiro et al., 2019).  
Augmented factorials are factorial experi-
ments that also include one or more addition-
al treatments and were discussed by Marini 
(2003) and Piepho et al. (2006). Factorial 
experiments are more efficient (Fisher, 1926) 
and more powerful (Chin and Lee, 2008; 
Czitrom, 1999) than studying one factor at a 

time while other factors are kept fixed. This 
paper will be limited to a discussion of only 
complete factorials. The primary reason for 
considering factorial experiments is to deter-
mine if the effect of one level of a factor on 
the response variable depends on the level 
of another factor. However, when interac-
tions are significant post-analysis of variance 
(ANOVA) procedures may be complicated.  
For this reason, some authors choose to ig-
nore significant interactions and discuss only 
main effects. Even worse, some researchers 
may not even recognize the factorial nature 
of the experiment and simply perform a one-
way ANOVA on all treatment combinatons. 
If the P-value for treatment is significant, 
a multiple comparison is used for all pos-
sible pair-wise comparisons of the treatment 
means. However, the reason that we perform 
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factorial experiments is because we want to 
know if two or more factors interact. Ignor-
ing interactions, or comparing simple effect 
means (cell means) may lead to misinterpre-
tation of the results. Although still complicat-
ed, advances in statistical software packages 
over the past several decades have facilitated 
the interpretation of interactions.    
  Types of independent variables. Factorial 
experiments may involve only quantitative 
factors, such as temperature, several levels 
of fertilizer, or several concentrations of a 
growth regulator, and are best analyzed with 
multiple regression (Chew, 1977; Hinkel-
mann and Kempthorne, 1994). Experiments 
involving only qualitative factors, such as 
cultivars, rootstocks, and types of potting 
media, are analyzed with ANOVA and will be 
discussed in more detail in this paper. Experi-
ments involving both qualitative and quanti-
tative factors can be analyzed with analysis 
of covariance (ANCOVA) as described by 
Marini and Ward (2012).  
  Testing hypotheses with ANOVA. Interpre-
tation of experiments with more than three 
factors is often very complex and such ex-
periments should be avoided if possible. 
To demonstrate analysis of a 2 x 4 x 2 fac-
torial experiment, a partial data set from a 
raspberry high tunnel experiment will be 
used; where two cultivars (‘Josephine’ and 
‘Polka’) were grown in high tunnels covered 
with four plastics (GIN, KLP, TUFF, and 
UVB) for two years (2016 and 2017). The 
experimental design was a randomized com-
plete block (RCBD), with three blocks. The 
RCBD is common in agricultural research, 
but factorial treatments can be used with oth-
er experimental designs. The data were mod-
ified to produce a three-way interaction. With 
this factorial treatment structure, we can test 
the main effects of the three factors, three 
two-way interactions to test the additive re-
lationship between each pair of factors, and 
the three-way interaction to test the additive 
effects of all three factors. 
  The following is another way of describ-
ing the seven hypotheses that can be tested 

with a three-way ANOVA.
1.	 Yields for the two cultivars are equal (‘Jo-

sephine’ = ‘Polka’),
2.	 Yields for the four plastics are equal (GIN 

= KLP = TUFF = UVB),
3.	 Yields for the two years are equal (2016 

= 2017),
4.	 The effects of cultivar and plastic are ad-

ditive (the effect of a cultivar does not de-
pend on the plastic; this is the cultivar x 
plastic interaction), 

5.	 The effects of cultivar and year are addi-
tive (the effect of a cultivar does not de-
pend on the year; this is the cultivar x year 
interaction),

6.	 The effects of plastic and year are additive 
(the effect of a plastic does not depend on 
the year; this is the plastic x year interac-
tion),

7.	 The effects of cultivar, plastic and year are 
additive (the effect of a cultivar does not 
depend on the combination of plastic and 
year; the effect of a plastic does not depend 
on the combination of cultivar and year; 
the effect of a year does not depend on the 
combination of plastic and cultivar; this is 
the cultivar x plastic x year interaction).  

 
  Identifying interactions. Three different 
approaches that are sometimes used in agri-
cultural research to interpret interactions will 
be compared. The following analyses can be 
performed with most of the better statistical 
software packages that can appropriately an-
alyze mixed models, but for this paper SAS’s 
GLIMMIX procedure will be used (SAS Inst. 
Inc. 2013). Before any statistical analyses are 
performed it is a good idea to “get to know 
your data” with some scatter plots to observe 
patterns in the data and to identify unusual 
observations that are sometimes called “out-
liers”. Descriptive statistics (N, means, max-
imum, minimum, variances, etc.) can help 
identify errors in coding, unusual observa-
tions, and possible violation of the assump-
tion of homogenous treatment variances. 
Visualizing data is often easier with plots of 
treatment means (Fig. 1).  PROC GPLOT 
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was used to produce the graphs in Figure 1. 
Yields were generally higher in 2017 than in 
2016 and yields tended to be slightly higher 
for ‘Josephine’ than for ‘Polka’ in 2017, but 
not in 2016, indicating a possible cultivar by 
year interaction. For ‘Josephine’ yields were 
lowest for KLP in 2016, but highest in 2017 
and the opposite was true for ‘Polka’ under 
KLP in 2017. Plastic affected yield in 2017 
to a greater extent than in 2016 regardless of 
cultivar. Taken together there is visual evi-
dence of a three-way interaction because the 
lines for the two cultivars are not parallel for 
cultivars within years or years within each 
cultivar.
  Following graphical examination of the 
data, we can use formal statistical tests to 
verify our preliminary interpretation. In this 
case we can perform a three-way ANOVA 
with block as a random effect. Depending on 
the results from the ANOVA, different post-
ANOVA analyses may be used to help inter-
pret the results.
1.	 If no interactions are significant, but one 

or more main effects are significant, then 
all pairs of marginal means (main effect 
means) for a factor can be compared or 
means can be compared against a control 
or some other treatment.   

2.	 If the highest-order interaction (in this 
case the 3-way interaction) is not sig-

nificant, but one or more lower-order 
interaction(s) (in this case the 2-way in-
teractions) are significant, simple effects 
or cell means can be compared because 
marginal means may not properly repre-
sent the treatment differences at the vari-
ous levels of a factor. Cell means can be 
compared only as simple effects, where 
all but one factor is fixed at a certain level. 

3.	 If the highest-order interaction is signifi-
cant, then the marginal means and simple 
effects associated with lower-order in-
teractions become less interesting, even 
if they are significant. The three-way in-
teraction can be dissected by comparing 
simple effects, to test the effect of one fac-
tor on the response variable while holding 
the other two factors constant.  

 
  In the horticultural literature, several post-
ANOVA tests have been used when inter-
actions were significant. Some approaches 
are more appropriate than others and some 
provide more information than others, but 
the interpretation of results often depends on 
the approach used. Below, some of these ap-
proaches will be demonstrated to dissect the 
significant three-way interaction. Many re-
searchers hope that higher-level interactions 
are not significant because results are diffi-
cult to interpret. Most researchers consider 

 

Figure 1. Plots of means for 2 two raspberry cultivars grown in high tunnels under four types of plastic for 
two years. The symbols represent the mean for each combination of cultivar (‘Josephine’ on the left and 
‘Polka’ on the right), plastic and year, also called simple means or cell means.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plots of means for 2 two raspberry cultivars grown in high tunnels under four types of 
plastic for two years. The symbols represent the mean for each combination of cultivar (‘Josephine’ 
on the left and ‘Polka’ on the right), plastic and year, also called simple means or cell means.
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P-values < 0.05 to be significant. However, 
the American Statistical Association recently 
stated that “well-reasoned statistical argu-
ments contain much more than the value of 
a single number and whether that number 
exceeds an arbitrary threshold”, such as P < 
0.05 (Wasserstein and Lazar, 2016). Since we 
perform factorial experiments specifically 
because we want to know if there is interac-
tion, I consider a P-value of 0.08 as adequate 
evidence to reject the null hypothesis that the 
factors are additive because I want to explore 
the interaction. Hinkelmann and Kempthorne 
(2005) suggested that interactions with P-
values as high as 0.1 may be investigated by 
looking at simple effects.    
  One-way ANOVA on all treatment com-
binations. Table 1 shows the SAS code to 
perform the three-way ANOVA with PROC 

GLIMMIX, along with some of the output. 
The “Covariance Parameter Estimates” table 
shows the estimates of the variance compo-
nent parameters. The estimate of the block 
variance component is 0.01124 and the es-
timate of the error variance component is 
2.5545 (labelled “Residual”). Options can 
be added to the model statement to request 
confidence intervals. The second table is the 
ANOVA showing the sources of variation 
or “Effect”, the degrees of freedom for the 
numerator and the denominator, the F-value, 
and the probability of a greater F. The ANO-
VA table shows that the main effect of year 
is significant (P < 0.0001), but there is insuf-
ficient evidence to reject the null hypothesis 
that means for plastics or cultivars are equal. 
The only two-way interaction that is signifi-
cant is year x cultivar (P = 0.0242). In cases 

Table 1. SAS code and output for a three-way analysis of variance in a randomized complete block 
design using the GLIMMIX procedure.

Table 1. SAS code and output for a three-way analysis of variance in a randomized 
complete block design using the GLIMMIX procedure. 
 

Proc GLIMMIX; 
        Class block year cultivar plastic; 
        Model yield = year plastic cultivar plastic*year plastic*cultivar  
                 cultivar*year cultivar**plastic*year; 
        Random block; 

   Run;  
  
 

 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

year 1 30 41.62 <.0001 

plastic 3 30 0.38 0.7656 

cultivar 1 30 0.90 0.3495 

year*cultivar 1 30 5.64 0.0242 

cultivar*plastic 3 30 1.96 0.1407 

year*plastic 3 30 0.41 0.7484 

year*cultivar*plastic 3 30 2.99 0.0464 
 

 

 

Parameter Estimates 

Cov Parm Estimate Standard Error 

block 0.01124 0.1758 

Residual 2.5545 0.6596 
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such as this, where the highest-level inter-
action is significant (P = 0.0464), the main 
effects and the lower-level interactions are 
usually of less interest than understanding 
the three-way interaction.
  Agricultural researchers sometimes ignore 
significant interactions and only consider 
marginal means. Although such an approach 
is usually discouraged, Hinkelmann and 
Kempthorne (2005) suggest that tests for 
main effects are useful and meaningful when 
codirectional interaction is present, but not 
when antidirectional interaction is present. 
Codirectional interaction occurs when the 

change in the response is in the same direc-
tion and antidirectional interaction occurs 
when the change in response is in the oppo-
site direction. 
  In the horticultural literature we can find 
several ways to dissect interactions, and each 
has advantages and disadvantages. One way 
is to create a new variable by recoding each 
combination of treatments and perform a 
one-way ANOVA on the 16 treatment com-
binations, followed by performing a multiple 
comparison, such as the Tukey-Kramer test 
on the 16 means (Table 2). The table for 
the Covariance Parameter Estimates is not 

Table 2. SAS code plus output when a three-way factorial in a randomized complete block design 
is analyzed as a one-way ANOVA with 16 treatments using the GLIMMIX procedure.

Z LSmeans followed by common letters do not differ at the 5%, by Tukey-Kramer test.

Table 2. SAS code plus output when a three-way factorial in a randomized 
complete block design is analyzed as a one-way ANOVA with 16 treatments 
 using the GLIMMIX procedure.  

                
Title ‘One-way ANOVA with 16 treatments (trt)’; 
    Proc GLIMMIX; 
    Class block trt; 
    Model yield = trt; 

                    Random block; 
    LSmeans trt / adjust = tukey lines; 
Run; 

 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

trt 15 30 4.36 0.0003 
 

 

 

 

 

 

 

 

 

 

      Z LSmeans followed by common letters do not differ at the 5%, 
     by Tukey-Kramer test. 

 

 

   Cultivar Plastic Yield 
2016 Josephine GIN   7.3 b z 
  KLP   6.1 b 
  UVB   7.6 b 
  TUFF   7.0 b 
 Polka GIN   7.7 b 
  KLP   7.5 b 
  UVB   7.1 b 
  TUFF   8.3 b 
2017 Josephine GIN   9.9 ab 
  KLP 13.3 a 
  UVB 10.4 ab 
  TUFF 10.7 ab 
 Polka GIN 10.3 ab 
  KLP   7.8 b 
  UVB   9.2 ab 
  TUFF 11.0 ab 
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shown because the estimates are the same 
as for the three-way ANOVA. As expected, 
the treatment is significant (P = 0.0003). The 
SAS code in Table 2 generates three addi-
tional tables that are not shown because they 
are large. The first table shows the treatment 
(trt) Least Squares Means which shows for 
each treatment the Estimate or Least Squares 
mean, the standard error of the estimate, the 
denominator degrees of freedom, the t-value 
to test the hypothesis that the LSmean is 
equal to zero and its P-value. In most cases, 
we do not care if the LSmeans are equal to 
zero. The second table in the output is the 
“Differences of trt Least Squares Means Ad-
justment for Multiple Comparisons: Tukey-
Kramer”, where there is a row for each of 
the 120 pair-wise comparisons. Results 
shown in the third table labelled “Tukey-
Kramer Grouping for trt Least Squares 
Means (Alpha=0.05)”, requested with the 
LINES option in the LSMEANS statement, 
are summarized in Table 2. In the output the 
treatment combinations were arranged in 
descending order for yield, so the data were 
rearranged in Table 2 to facilitate interpreta-
tion. Based on the Tukey-Kramer test, ‘Jose-
phine’ under KLP in 2017 had higher yields 
than all other treatment combinations except 
five. This approach allows us to determine 
which treatment combinations are equal and 
it is relatively easy to perform and simply re-
quires creating new treatment names for each 
treatment combination. However, many of 
the comparisons are not of interest. For ex-
ample, we probably do not care if yield for 
‘Josephine’ under GIN in 2017 is different 
than ‘Polka’ under KLP in 2016. Valid sim-
ple effects for this experiment could be ‘Jo-
sephine’ under GIN in 2016 vs. ‘Josephine’ 
under GIN in 2017, or ‘Josephine’ under GIN 
in 2017 vs. ‘Josephine’ under KLP in 2017. 
Another problem with this approach is that 
pairwise, multiple comparisons are appropri-
ate only for unstructured treatments (Chew, 
1976; Gates, 1991; Lowry, 1992; Yossa and 
Verdegem, 2015), and factorial experiments 
have structured treatments. Generally, per-

forming multiple comparisons of individual 
factorial treatments is discouraged, but some 
statisticians indicated they might condone 
such an approach if the main effects were not 
significant (D.B. Duncan) or if their F-ratios 
were less than two (J.W. Tukey) (Chew, 
1977). Older textbooks often suggest using 
contrasts to make preplanned comparisons of 
interest (Lentner and Bishop, 1993).   
  Dividing the data set. A common post-
ANOVA technique to interpret interaction in-
volves physically slicing the data to analyze 
simple main effects by breaking the data set 
into separate parts. In the case of our three-
way factorial, we could perform two two-
way ANOVAs on each year, two two-way 
ANOVAs for each cultivar and four two-way 
ANOVAs for each plastic. If the two-way 
interaction is not significant, then main ef-
fect means can be compared with a multiple 
comparison. If the interaction is significant, 
then one-way ANOVAs can be performed 
on each level of each variable, followed by 
a multiple comparison. For factors with only 
two levels, such as year and cultivar, mul-
tiple comparisons are not needed because 
the ANOVA tests the hypotheses that the 
two levels are equal. Alternatively, we could 
perform four one-way ANOVAs to compare 
plastics within each combination of cultivar 
and year. For brevity, Table 3 shows results 
for four ANOVAs to compare plastics within 
each combination of year and cultivar. Inter-
pretation of results when simple main effects 
are analyzed is different than when compar-
ing all 16 treatment combinations in Table 2. 
Notice that the P-values for ‘Josephine’ in 
2016 and ‘Polka’ in 2017 are not significant, 
indicating that yield was not affected by the 
four plastics. For ‘Polka’ in 2016, TUFF had 
higher yield than UVB. For ‘Josephine’ in 
2017, KLP had higher yields than GIN. Ac-
cording to Schabenberger et al. (2000) there 
are two disadvantages of physical slicing: 1.) 
By physically slicing by year and cultivar, 
each analysis contributes only ¼ of the total 
information. The error degrees of freedom 
are reduced, and the individual analyses have 
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less power than the combined analysis where 
interaction was detected; and 2.) Physically 
slicing is more work and requires performing 
at least four ANOVAs which need to be com-
bined for a meaningful joint interpretation. 
Slicing without separating the data. A third 
post-ANOVA approach involves slicing 
without separating the data (Schabenberger 
et al., 2000) to make meaningful compari-
sons of cell means. The significant year x 
cultivar x plastic interaction can be sliced in 
the following ways: by year, by cultivar, by 
plastic, by year x cultivar, by year x plastic, 
and by cultivar x plastic. The last three ways 
are most meaningful, because they compare 
the levels of one factor while holding the 
other two factors fixed. The SAS code for the 
three ways of slicing the LSMEANS, along 
with the cell means for each combination of 
year and cultivar are shown in Table 4 and 
cell means for each combination of year and 
plastic are shown in Table 5. Although the 
cell means in Tables 4 and 5 are identical to 
those in Table 3, the letters for the compari-
sons are different. The SLICEDIFF option in 
the LSMEANS statement eliminates many 

Table 3. SAS code for physically slicing the data set, using the SORT procedure, to perform four 
one-way ANOVAs in a RCBD. The ANOVAs for each combination of year and cultivar tests the null 
hypothesis that yield is not affected by plastic. Output for the four ANOVAs is presented in one table.

z Values within columns followed by common letters do not differ at the 5% level by Tukey-Kramer test.

of the uninteresting comparisons shown in 
Table 2. The first LSMEANS statement com-
pares the four plastics within each combina-
tion of year and cultivar. The cell means are 
the same as in Table 3 but results from the 
multiple comparison is different. For both 
cultivars in 2016, the plastic covers did not 
affect yield (Table 4). However, in 2017 for 
‘Josephine’, GIN had lower yields than KLP 
or UVB. For ‘Polka’ in 2017, KLP had lower 
yields than TUFF. The second LSMEANS 
statement compares the two cultivars within 
each combination of year and plastic. In 2016 
the two cultivars had similar yields for each 
type of plastic, but in 2017 ‘Josephine’ had 
higher yields than ‘Polka’ under KLP.  The 
16 cell means are shown again in Table 5, 
along with P-values for the comparison of 
years within each combination of cultivar 
and plastic. ‘Josephine’ had significantly 
higher yields in 2017 for all four plastics. For 
‘Polka’ years were different for only TUFF. 
  Summary. It is obvious that the interpreta-
tion of the results and conclusions often vary 
depending on the post-ANOVA procedure 
that is used in the presence of a significant 

      

                            Table 3. SAS code for physically slicing the data set, using the SORT procedure,  
                          to perform four one-way ANOVAs in a RCBD. The ANOVAs for each combination 
                          of year and cultivar tests the null hypothesis that yield is not affected by plastic.  
                          Output for the four ANOVAs is presented in one table. 
 
    
                                              Proc sort; by year cultivar; run; 

   Proc GLIMMIX; by year cultivar; 
                                                    Class block plastic; 
                                                    Model yield = plastic; 
                                                    Random block; 
                                                   LSmeans plastic / adjust = tukey lines; 
                                            Run;        
                             

 
 

 

 

 

 

     Z LSmeans followed by common letters do not differ at the 5%, 
                                by Tukey-Kramer test. 
 

 

 2016 2017 
Plastic Josephine Polka Josephine Polka 

GIN    7.3 a z   7.7 ab   9.9 b 10.3 a 
KLP 6.1 a   7.5 ab 13.3 a   7.8 a 
UVB 7.6 a 7.1 b   10.4 ab   9.2 a 
TUFF 7.0 a 8.3 a   10.7 ab 11.0 a 

P-value from one-way ANOVA 
 0.3280 0.01566 0.0267 0.5828 
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three-way interaction. Analyzing the data as 
a one-way ANOVA and comparing all 16 cell 
means indicates that the eight combinations 
of cultivar and plastic in 2016 were not dif-
ferent, and in 2017 ‘Josephine’ under KLP 
had higher yields than ‘Polka’ under KLP 
(Table 2), but the only significant pair-wise 
comparison is not very meaningful. When 
data were physically sliced to perform one-
way ANOVAs for each combination of 
year and cultivar, only two pair-wise com-
parisons were significant. In 2016 ‘Polka’ 
under TUFF had higher yields than under 
UVB, and in 2017 ‘Josephine’ under KLP 
had higher yields than under GIN (Table 3). 
Dissecting the three-way interaction with the 

Table 4. SAS code for slicing the data set without separating the data using the slicediff option in the 
LSmeans statement. Output from the ANOVA and the LSmeans are rearranged in a way that would 
be acceptable in a publication.

Z 	LSmeans within each column (combination of cultivar and year) followed by common letters do not differ at the 5% level by 
SLICEDIFF, requested with the first LSmeans statement.

y 	Asterisk between cultivars for each combination of year and plastic indicates the two cultivars differ within a year at the 5% 
level, requested with the second LSmeans statement.

       Table 4. SAS code for slicing the data set without separating the data using the  
       slicediff option in the LSmeans statement. Output from the ANOVA and the 
       LSmeans are rearranged in a way that would be acceptable in a publication.   

 

Title ‘ANOVA with Slicediff’; 
Proc GLIMMIX; 
   Class block year cultivar plastic; 
   Model yield = year plastic cultivar plastic*year cultivar*year   
       cultivar*plastic cultivar*plastic*year; 
   Random block; 
   LSmeans cultivar*plastic*year / slicediff = cultivar*year.  
   LSmeans cultivar*plastic*year / slicediff = plastic*year.  
   LSmeans cultivar*plastic*year / slicediff = cultivar*plastic.  
Run; 

 
 
 
 

 

 

 

 

 

 

     

 Z LSmeans within each column (combination of cultivar and year) followed by  
   common letters do not differ at the 5% level by SLICEDIFF, requested with 
   the first LSmeans statement. 

                   y Asterisk between cultivars for each combination of year and plastic indicates  
               the two cultivars differ within a year at the 5% level, requested with the  
               second LSmeans statement. 
 

                 2016                     2017 
Plastic Josephine Polka Josephine Polka  
GIN 7.3 a z 7.7 a  9.9  b 10.3 ab 
KLP 6.1 a 7.5 a 13.3 a      * y   7.8 b 
UVB 7.6 a 7.1 a 10.4 a   9.2 ab 
TUFF 7.0 a 8.3 a 10.7 ab 11.0 a 

P - value from ANOVA 
Year                                                  < 0.0001 
Plastic                                                  0.7656 
Cultivar                                                0.3495 
Year*Plastic                                        0.7484 
Year*Cultivar                                      0.0242 
Year*Cultivar*Plastic                        0.0457 

three LSmeans statements limits the pairwise 
comparisons to mostly meaningful compari-
sons. Plastic covers affected yield for both 
cultivars in 2017 but not in 2016. ‘Josephine’ 
had higher yields than ‘Polka’ under KLP in 
2017, but not in 2016. For ‘Josephine,’ yields 
were higher in 2017 than in 2016 for all plas-
tics, but for ‘Polka’ yields for the two years 
were not different under any of the plastics. 
The reason for different results is because the 
standard error of the difference was 0.9246 
and 1.3050 for the one-way and the three-
way ANOVAs, respectively and both had 30 
degrees of freedom in the denominator, but 
numerator degrees of freedom varied. For 
the four ANOVAs the standard error of the 
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Table 5. The effect of year on mean yield for combinations of raspberry cultivar and plastic. 
Output requested with the third LSmeans statement in Table 4.   
 

 Josephine Polka 
Year   GIN    KLP   UVB   TUFF   GIN   KLP   UVB  TUFF 
2016   7.3    6.1    7.6    7.0     7.7   7.5   7.1    8.3 
2017   9.9  13.3  10.4  10.7   10.3   7.8   9.2  11.0 
P-value 0.0532z <0.0001 0.0397 0.0087 0.0587 0.8493 0.1283 0.0497 

 

Z P-values for testing the hypothesis that years are equal within each combination of cultivar 
and plastic, requested with the third LSmeans statement in Table 4.   

Table 5. The effect of year on mean yield for combinations of raspberry cultivar and plastic. Output 
requested with the third LSmeans statement in Table 4.

Z 	P-values for testing the hypothesis that years are equal within each combination of cultivar and plastic, requested with the third 
LSmeans statement in Table 4.

difference was 0.7546, 0.2681, 0.8544, and 
0.8544 for ‘Josephine’ in 2016, ‘Josephine’ 
in 2017, ‘Polka’ in 2016 and ‘Polka’ in 2017 
with only 8 degrees of freedom in the denom-
inator. When using post-ANOVA procedures 
to dissect the significant interactions, authors 
are encouraged to consider methods that will 
make the pair-wise comparisons that are 
most meaningful. This is generally accom-
plished by comparing the levels of one fac-
tor while holding the other factors fixed by 
slicing the highest-order interaction(s) that is 
significant.     
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