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Abstract

Apple rootstocks from the Geneva® breeding program tolerated apple replant disease in experimental and
commercial plantings in North and South America, Europe and Africa. Apple replant disease (ARD) is biologi-
cal in nature and composed of several fungal, oomycete and nematode actors that when combined can stunt or
even kill young roots. A major contributor to the ARD syndrome is the necrotrophic soilborne oomycete Pythium
ultimum, which can individually overwhelm young roots and root hairs causing them to decline. Genetic resis-
tance to ARD and its components has been incorporated into apple rootstocks from a wild apple species Malus
x robusta ‘Robusta 5°. This research was aimed at increasing our understanding of the genetic complexity of
the resistance to P. u/timum in progeny of ‘Robusta 5°. In a replicated experiment we phenotyped 48 individual
progeny (breeding lines) belonging to a larger population derived from a cross between replant susceptible apple
rootstock ‘Ottawa 3’ and resistant ‘Robusta 5°. We also leveraged existing genomic infrastructure in the form of
high-density genetic maps composed of microsatellite and single nucleotide polymorphic markers segregating in
the same cross. When combined with the genotypic means of the 48 progeny in Quantitative Trait Locus (QTL)
analysis, candidate genomic locations were identified on chromosomes 2, 5, 13, 16 and 17 that were associated
with relative susceptibility of those breeding lines to P. ultimum infection. The allelic effects of the loci were
measured using a generalized linear model and their combinatorial interactions were studied. Of the resistance
allelic effects examined all but one were derived from ‘Robusta 5°. The ultimate goal of this work is to develop
genetic markers that can aid in the selection of P. ultimum resistant rootstocks. However, the multi-locus nature
of this resistance trait may necessitate that only loci with larger effects (on chromosome 5, 17 and 13) be targeted
for further development.

Apple is one of the most valuable fruit
crops in the United States. The 2021 apple
crop was valued at nearly $3.2 billion grown
on 382,000 acres of land (www.USAPPLE.
org). Every state in the United States grows
apples, and 29 states raise apples commer-
cially. Washington State is responsible for
approximately 60 percent of the total U.S. ap-
ple production. Other leading states include
Michigan, New York, Pennsylvania, Califor-
nia and Virginia. An increasing share of or-
chard land is becoming certified for organic
apple production with Washington State ac-
counting for about 70 percent of the nation’s

certified organic apple acres, followed by
California. The development of apple cul-
tivars for new and traditional markets has
contributed to much of the industry’s growth
and economic viability. Thus, it is important
for the U.S. apple industry to continue the
rapid deployment of new, viable apple cul-
tivars. However, due to the encroachment
of urban development there is a paucity of
sites suitable for apple production that have
not been previously planted with pome fruit,
resulting in the need to plant new orchards
on the same plot of land. The need to es-
tablish new orchards on old orchard ground
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increases the risk of exposing the young trees
to replant disease, a complex syndrome that
affects apple root growth and development.
Chronic root health issues are common in
perennial crop production systems, and pri-
marily arise due to the activity of soil-borne
pathogens and parasites. Many individual
pathogens, as well as complexes of soil
borne pathogens, can negatively affect root
health, plant growth and productivity. The
buildup in pathogen densities over time in
perennial cropping systems has been docu-
mented in major apple production areas in
multiple countries (Mazzola, 1998; Mazzola
and Manici, 2012; Rufato et al., 2021) and
may play a part in reduced productivity over
the lifespan of the orchard. This increase in
pathogen densities was shown to contribute
to the general difficulty in replanting of sites
with an economically viable crop of the same
or similar species (Rumberger et al., 2007).
Apple replant disease has generally been
attributed to biotic factors, although the iden-
tity and consistency of the complex inciting
this disease have been arguable (Kviklys et
al.,2016; Reim et al., 2022; Yim et al., 2015).
Discrepancies as to the nature of this disease
can be ascribed to numerous factors, includ-
ing an insufficient depth of analysis con-
ducted within investigations of the subject.
Meaningful studies concerning the etiology
of replant disease have utilized a multipha-
sic approach, incorporating a diversity of
methods to discern the causal biology. The
principal elements identified as causal agents
of apple replant disease include members
of the fungal/oomycete genera Ilyonectria,
Phytophthora, Pythium, and Rhizoctonia
spp., along with the endoparasitic nematode
Pratylenchus penetrans with different spe-
cies dominating at any specific replant or-
chard site. Pythium ultimum is among the
most virulent species of Pythium affecting
apple (Mazzola et al., 2002; Zhu et al., 2017,
Zhu and Saltzgiver, 2020), and functions as
causal agent of apple replant disease on a
global basis (Fernanda Ruiz-Cisneros et al.,
2017; Grigel et al., 2019; Jeffers et al., 1982;

Mazzola, 1998). In the absence of soil fumi-
gation, there are few economically effective
and ecologically desirable choices for man-
agement of tree fruit replant diseases. One
option is to establish new plantings on sites
not previously used with the respective crop;
however, the availability of such land in the
primary production regions ranges from lim-
ited to non-existent. Certain cultural prac-
tices, such as fallowing for extended periods
have been reported to provide partial control
of the peach replant problem (Leinfelder and
Merwin, 2006; Leinfelder et al., 2004). In
contrast a fallow period of up to three years
provided no detectable benefit to growth and
yield of apple on replant orchard ground
(Mazzola and Mullinix, 2005). As is the case
for a preponderance of crop species, host
tolerance/resistance, in this case apple root-
stocks, is an economically attractive mean
to employ for the management of diseases
in tree fruit production ecosystems. Toler-
ance to replant disease, and correspondingly
individual components of the pathogen com-
plex, has been detected in apple germplasm
(Isutsa and Merwin, 2000; Leinfelder et al.,
2004; Rumberger et al., 2004) and seems to
be the best and more reliable long-term op-
tion for curbing the effects of this disease.
However, even tolerant rootstocks exhibit in-
creased growth and yield in response to soil
fumigation thus indicating incomplete resis-
tance to the causal pathogen complex among
the commercially available apple rootstock
germplasm (Auvil etal., 2011; Mazzola et al.,
2015, Macedo et al., 2019; Wang and Maz-
zola, 2019; Spornberger et al., 2020). The
initial basis for selecting apple rootstocks
from the Geneva® breeding program, subse-
quently identified as tolerant to apple replant
disease, centered on scion vigor, dwarfing,
precocity, resistance to fire blight and to phy-
tophthora crown and root rot (Cummins and
Aldwinckle, 1983; Gardner et al., 1980). Re-
sistance to some components of the pathogen
complex that incites apple replant disease
was identified in germplasm developed by
the Geneva® breeding program (Reim et al.,
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2020; Reim et al., 2022; Zhu and Saltzgiver,
2020). Multiple modes of action may con-
tribute to the resistance in rootstock germ-
plasm and may include rhizodeposition of
substances promoting beneficial communi-
ties in the rhizosphere and endophytic bi-
ome (Leisso et al., 2017; Rumberger et al.,
2004; Van Horn et al., 2021), morphological
changes in roots and/or a higher level of acti-
vation of the defense response to pathogenic
components like Pythium species as identi-
fied in the laccase dependent lignification re-
sponse found in G.935 apple rootstock (Zhu
et al., 2021). Apple rootstocks demonstrate
significant variation in susceptibility/toler-
ance to this pathogen (Mazzola et al., 2009),
however the genetic basis of this tolerance is
not known and thus of limited value in breed-
ing efforts which seek to develop rootstock
resistance to replant disease. The genetic
contributor to the replant tolerance and resis-
tance to Pythium species is Malus * robusta
‘Robusta 5° (R.5) which is a parent to 12
Geneva® apple rootstocks that have demon-
strated tolerance to the replant complex and
resistance to some of its individual compo-
nents (Isutsa and Merwin, 2000; Mazzola et
al., 2009; Reim et al., 2022; Utkhede, 1985;
Zhu and Saltzgiver, 2020). Genetic map-
ping of quantitative and qualitative traits has
been accomplished in several instances with
progeny of ‘Robusta 5°, more specifically
with fire blight caused by Erwinia amylov-
ora (Gardiner et al., 2012), powdery mildew
caused by Podosphaera leucotricha (Wan
and Fazio, 2011), gene expression (Jensen
et al., 2014), and in the discovery of genetic
factors associated with dwarfing (Fazio et al.,
2014). Progeny belonging to the same apple
rootstock breeding population was screened
for tolerance to P. ultimum to discover the na-
ture of inheritance and as a means to develop
a marker assisted selection program.

Materials and Methods
Germplasm. The 48 breeding lines used
for this investigation are part of a larger
progeny of a cross between ‘Ottawa 3’ (0.3)

and ‘Robusta 5’ (R.5) which has been used
to construct genetic maps and infer genetic
inheritance of many traits including dwarfing
(Fazio et al., 2014), powdery mildew resis-
tance (Wan and Fazio, 2011), nutrient uptake
(Fazio et al., 2013) and rootstock gene ex-
pression (Jensen et al., 2014).

Inoculation with Pythium ultimum, data
collection and analysis. Pythium ultimum
oospore inoculum was prepared using isolate
60-1198 which was recovered from roots of
Gala/M9 apple growing at an orchard located
in North central Washington State (Maz-
zola et al., 2002). Inoculum was prepared
by inoculating 30 ml of potato carrot broth
supplemented with two drops of wheat germ
oil per L and 100 pg-ml' ampicillin in Pe-
tri dishes with a 5 mm-diameter agar disks
cut with a cork borer from the edge of an ac-
tively growing colony of P. ultimum. Plates
were incubated at 22 °C for approximately 1
month until abundant oospore production is
observed. P. ultimum mycelia and oospores
were collected by filtering the liquid medium
through a double layer of cheese cloth and
comminuted by blending for 2 min in 100
ml of water. The suspension was applied to
pasteurized soil as a mist to obtain an initial
density of approximately 300 propagules per
gram of soil, which is within the propagule
density commonly detected in apple orchard
soils (Mazzola et al., 2002; Mazzola et al.,
2009).

Each rootstock breeding line was repre-
sented by eight individual plants and was
planted into separate pots containing P. ulti-
mum infested soil. Plants were grown in the
spring of 2014 in the USDA ARS Wenatchee
greenhouse and roots were harvested after
three weeks. For these assays, the percent-
age of P, ultimum infected root segments was
determined by plating 10 randomly selected
segments (0.5-1.0 cm) per plant onto PSSM
agar (Mazzola et al., 2001). Hyphal growth
from root segments was examined with a
compound light microscope (100x magnifi-
cation) after 24, 48 h and 72 h of incubation
at room temperature.
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Genetic mapping, quantitative trait locus
analysis and effect modeling. The genetic
map used for this research was updated from
the consensus maps constructed used to
identify the dwarfing loci composed mostly
of microsatellite loci (Fazio et al., 2014,
Liebhard et al., 2002; N’Diaye et al., 2008;
Silfverberg-Dilworth et al., 2006) with the
addition of about 3,000 additional single
nucleotide polymorphic (SNP) loci from the
20K Illumina Infinium SNP chip array (Bi-
anco et al., 2014) using Joinmap 5 genetic
mapping software (Van Ooijen, 2018), such
map validated against several apple genome
assemblies and multiple progenies (Peace
et al., 2019; Vanderzande et al., 2019). The
breeding line phenotypic means were used as
an input in the MapQTL 6 Software for QTL
analysis (Van Ooijen, 2009). The Kruskal-
Wallis analysis was used to identify peak
marker loci depicted in Fig. 1 using SAS

JMP PRO 16 (SAS Institute Inc., Cary, North
Carolina). Further QTL analysis used the re-
stricted Multiple QTL Modeling (rMQM) in
MapQTL6 where known markers associated
with the QTL are used as cofactors in the ap-
proximate multiple-QTL model with additive
and dominant gene actions only. The locus
interaction model was initially constructed
as a full factorial using the standard least
squares methods in Minitab software with
all five loci and then scaled down to display
significant effects. The main effects and in-
teraction plots were produced using Minitab
software.

Results and Discussion
The inoculation with P. ultimum spores re-
sulted in differential (according to genotype)
successful colonization of susceptible root-
stock genotypes. The distribution of the ge-
notypic means (Fig. 1) for the trait was quasi

0 2 4

Count

Figure 1. Distribution of genotypic means for Pythium Score of 48 apple rootstocks progenies of the ‘Ot-
tawa 3’ x ‘Robusta 5’ cross where 0 represents more resistant and 10 more susceptible plants.



32

12

chro1

chro2

chio3

JOURNAL OF THE AMERICAN POMOLOGICAL SOCIETY
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Figure 2. Marker locus significance plot of the Kruskall-Wallis non-parametric statistic K* aligned with

the GDD-H13 apple genome.

normal with a mean score of 6.19, a standard
deviation of 2.74 with the upper and lower
95% boundaries of 7.02 and 5.37 respective-
ly. Rootstocks with a mean score below 3
were considered resistant/tolerant, scores be-
tween 3 and 7 intermediate and with scores
above 7 susceptible. This type of distribution
of genetic means is typical for complex traits
involving more than one segregating factor.
The Kruskall-Wallis (KW) statistical analy-
sis is regarded as the non-parametric equiva-
lent of the one-way analysis of variance in
MapQTL 6 where a segregating QTL with
strong effects linked closely to the tested
marker will result in large differences in the
average rank of marker genotypes. This anal-
ysis is used to glance at the whole genome
effects on the studied trait and for Pythium
Score it yielded two peaks with a P-value of
at least 0.005 on chromosomes 5 and 17 and
additional peaks with P-value of at least 0.05
on chromosomes 2, 16 and 13 (Fig. 2, Table
1). The allelic contribution of the ‘Robusta 5’
parent can be surmised by the marker classes
represented in the results: classes nn and np
represent markers that are heterozygous in
‘Robusta 5’ and homozygous in ‘Ottawa 3’
such that segregation of the ‘Robusta 5’ al-
leles can be surmised, whereas classes ac, ad,

be, and bd represent the combination in the
progeny of all available alleles at a locus (a
and b inherited from ‘Ottawa 3’ and ¢ and d
inherited from ‘Robusta 5”). Further analysis
with restricted Multiple QTL Modeling con-
firmed the significant QTLs where the cor-
responding markers selected as co-factors,
explained 65% of the observed variation.
Only markers representing chromosomes
2,5, 13, and 17 resulted as significant (P<
0.05) in the general linear model test (Table
2 ANOVA). Markers representing chromo-
some 16 did not show effects strong enough
to be considered significant. Similarly, all
interactions in the full factorial were not sig-
nificant at P< 0.05 level. This is likely due
to the low number of individuals tested mak-
ing less degrees of freedom available for all
tests. The number of marker classes repre-
sented within a locus could also be a factor
where markers having only two classes (nn,
np) use less degrees of freedom than mark-
ers with four classes (ac, ad, bc, bd). The
type of interactions among loci as observed
in Fig. 4 may also have contributed where in
some of the pairwise interactions only one
class of markers seems to ensue changes in
the mean. Nevertheless, we produced the in-
teraction graphic on Fig. 4 to illustrate that
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Table 1. Marker loci showing significant effects on Pythium susceptibility based on the K* statistic of the

Kruskall-Wallis analysis in MapQTL6 software.

Marker Name Significance of | Short Chromosome Segregation
the K* Designation and Position on | type?
Statistic GDD-H13
Genome
RosBREEDSNP_SNP_GA_60 | 0.005 Pyt _Chr05 5 nn, np
2526 _Lg5 00737_MAF50_162
3827 exonl
RosBREEDSNP_SNP_CT 313 | 0.005 Pyt Chrl7 17 nn, np
2636 Lgl7 01584 MAF50 M
DP0000810883 exonl5
RosBREEDSNP_SNP _CT 145 | 0.05 Pyt Chr02 2 nn, np
00796 Lg2 00002 MAF50 16
21685 _exon5
RosBREED SNP TC 330355 | 0.05 Pyt Chrl6 16 nn, np
8 Lgl6
RosBREEDSNP_SNP_TC 494 | 0.05 Pyt Chrl3 13 ac, bc, ad,
8282 Lgl3 02336 MAF40 52 bd
2995 exonl

* Segregation type according to MapQTL6 format where nn and np correspond to alleles originating from parent 2 of the cross.

Table 2. ANOVA for the four significant markers in the General Linear Model analysis.

Source DF Adj SS Adj MS F-Value P-Value
Pyt Chr02 1 20.47 20.468 4.20 0.04
Pyt _Chr05 1 22.84 22.837 4.68 0.03
Pyt Chrl3 44.10 14.699 3.01 0.04
Pyt Chrl7 3 40.76 13.585 2.78 0.05
Error 36 175.61 4.878

Lack-of-Fit 24 126.47 5.270 1.29 0.332
Pure Error 12 49.14 4.095

Total 44 331.77

not all the allele contributions by ‘Robusta 5’
have the same effect and that the lowest score
of susceptibility may only be obtained by one
combination of alleles. One very interesting
phenomenon is the effect on chromosome 13
where only one allelic combination (allele a
from O.3 and allele d from R.5) resulted in
a susceptibility score that is well below the
overall mean. Both ‘Robusta 5* and ‘Otta-
wa 3’ are interspecific hybrids (R.5 = Malus
prunifolia X Malus baccata and O.3 = Malus
domestica ‘Malling 9’ x unknown crabapple)
(Wan and Fazio, 2011; Wertheim, 1998) and

it is possible that the intra-locus interaction
might be a result of resistant alleles coming
from different wild species. We are in the
process of determining the origin of the resis-
tant allele coming from O.3. When the most
resistant alleles are combined in a group of
individuals the mean susceptibility score can
be as low as 2.6, whereas when the opposite
are combined the score can be as high as 9.5
(Fig. 5). In the KW analysis, the locus with
the highest K* statistic was near a previously
published putative location of mi397a micro-
RNA which is activated shortly after inocula-
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Main Effects Plot for PythiumScore
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Figure 3. Main effects plot for Pythium Score the four significant markers displayed in Table 1. In the
panel on the right Pyt Chrl7 was recoded to reflect only the inheritance of the “R5” alleles.
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Figure 5. Dual clustering dendrogram displaying a grouping according to marker locus classes and sus-
ceptibility score. The cluster containing individuals 170, 024, 027, 129, and 174 represents the most resis-
tant individuals and the best combination of marker alleles for resistance.

tion with P, ultimum and has major effects on
a laccase enzyme involved in lignification.
We are in the process of developing mark-
ers specific to the mi397 locus to monitor its
correspondence to the resistance in breed-
ing populations. The phenotypic character-
ization of resistance to P. ultimum in apple
rootstocks is a very labor-intensive endeavor,
hence the need to develop markers that can
aid by reducing the pool of breeding lines
slated to undergo phenotypic selection. We
are in the process of characterizing additional
breeding lines in the same cross in order to
validate the results of this research. To the
best of our knowledge this report represents
the first description the genetic components
of resistance to P. ultimum in Malus species.

Conclusion

Based on the results of the QTL analysis,
resistance to P. ultimum derived from wild
apple species M. x robusta ‘Robusta 5’ is very
complex in nature consisting of larger effect
loci on chromosome 5, 13, and 17 and minor
effects on chromosome 2 and 16. Being able
to select for the major resistance loci would be
a boon to breeding new apple rootstock with
resistance to components of the replant dis-
ease. Combining these loci with other essen-
tial apple rootstock loci that influence dwarf-
ing, precocity, resistance to fire blight and nu-
trient absorption will be a difficult combinato-
rial challenge that will require large breeding
populations and keen ability to follow relevant
alleles with robust genetic markers.
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About the Cover:

‘Brewster’ lychee. Litchi chinensis is the only member of the genus Litchi in the Sapindaceae
family. Lychee is a sub-tropical fruit native to south China where it has been cultivated for
more than 1000 years. The flesh is white or pinkish, the taste is sub-acid, with a consistency
like grape, but sweeter. The hardwood trees can grow 8 to 16 m tall, and the dense evergreen
canopy is dome shaped. Lychee is grown commercially in south and coastal Florida where
there is some chilling with no risk of hard freezes. There are 200 cultivars, and ‘Brewster’, the
second most important commercial cultivar in south Florida, was brought from China to the
U.S. by Rev. William N. Brewster. The fruit is medium to large, sweet, and juicy, and in taste
tests it consistently outranks most other cultivars. It has relatively large seeds, but more flesh
than many cultivars. ‘Brewster’ has bright purplish red skin and is resistant to anthracnose.
In Mexico ‘Brewster’ ripens in April and the season extends to mid-July in central Florida.
Lychee pulp is high in vitamin C, with smaller amounts of B vitamins and has moderate
amounts of polyphenols and anthocyanins. Photo by Johnathan Crane.





